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FOREWORD

Since 1980 there has been a tremendous advance in the state-of-the-art of QFT. This is
due primarily to the association of Wright Laboratory's Flight Dynamics Directorate
(WL/FIG) with the Department of Electrical and Computer Engineering of the Air Force
Institute of Technology (AFIT/ENG) and with Professor Issac M. Horowitz, the founder of
QFT. Numerous technical publications by WL/FIG and AFIT/ENG researchers have
resulted from this association. This sympcsium is a testimonial to these researchers and
is intended to transfer many of their results to the general public.
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PLENARY ADDRESS

QFT - PAST, PRESENT AND FUTURE

Isaac Horowitz, Professor Emeritus
University of California, Davis
Davis, CA 95616
and
Weizmann Institute of Science
Rehovot, Israel

ABSTRACT

Quantitative feedback theory (QFT) is an engineering science devoted to the problem of
achieving precise performance specifications, despite high uncertainty in the means of producing
the desired outputs. It was an outgrowth of the author’s work in Active Network Synthesis.
Early in its history it chose the input-output system description, frequency response and the icop
transmission as its principal and natural design tools. QFT is especially oriented towards the
practical designer in its emphasis on the cost of feedback, design transparency, and the
mathematical simplicity of its design methods. QFT has developed such techniques for SISO.
MIMO, single and multiple loop, linear and nonlinear, lumped and distributed plants. But it is as
yet in its infancy, pointing to vast, available problem areas.

1. Network Synthesis Origin

My role in the development of QFT was influenced by my prior work in Modern Network
Synthesis, especially Active Network Synthesis. A set of building blocks is assumed available:
resistors (R), inductors (L), capacitors (C) in passive network synthesis; R, C and transistors in
active RC synthesis. One is to design a function, usually the transfer function, by combining

these elements in a systematic maniter. Modem type “existence” theorems were rare in those days

because it was assumed that primarily engineering research was supposed to show how to buiid
practical systems rather than just prove that systsms could be built with idealized elements. So the
theorems were mostly implicit, constructive in nature, usually presenting design techniques based
on canonical structures. As the subject advanced, the practicality of the design constraints was
increased such as element size, value spread and dissipation factors.

My interest was in Active RC synthesis. The poles of RC transfer functions are confined
to the negative real axis. Feedback around the active element can move them into the complex
plane. But active clement parameters usually have much greater variation than passive elements,
So in the problem statement I would list their maximum variation (va), and the assigned tolerances
(vd) on the desired transfer function. In a narrow band filter, vd wouid be very small. Find a
synthesis technique for this purpose. assuming some R, C elements could be built with arbitrary
small variation. There are two problems here. One is the filter problem, to obtain the desired
nominal transfer function. The second is the sensitivity problem, to obtain the desired small vd/va
ratio. Here, feedback is intentionally used in the filter problem and introduces the second problem
which it has a major role in solving. Active network synthesis had heretofore not incorporated
sensitivity to such an extent.

It is an obvious transition from such an approach, to feedback control where the sensitivity
problem is paramount and the filter problem is mostly secondary. The sensitivity aspect is easier
in SISO feedback control because uncerainty is lodged in the plant function P(s), which appears




as a single block in the transfer function T(s) = FPG/(1 + PG). It is more complicated in active
synthesis: the low-frequency model of the active element has four resistances and a controlled
source. In the more challenging structures, these five parameters are scattered about in the system
transfer function, so unlike feedback control it is not simply a matter of making the loop
transmission large enough over a large enough frequency range.

2. PRINCIPAL FEATURES OF QFT

The principal features of QFT almost all appear in the first QFT work in 1959 [1]. Major
considerations were: time domain vs transform domain, input-output vs detailed internal
modelling, frequency response vs state-space, sensitivity function vs loop transmission, global
optimization vs detailed quantitative design. The transform domain was chosen because of the
great difficulty of satisfying specifications and stability directly in the time domain. Professor
Bamnard [2] is working in the latter area. Input-output seemed obvious because systems theory in

focuses on the relation between blocks, rather than on the internal Jesign of the individual
blocks. So why bother with the unnecessary complexity of detailed internal descriptions when
the information is irrelevant for our purpose? In a 20t order system, why use 20 equations when
19 of them are only definitions? Controllability, observability and hidden oscillations are easily
handled in a proper input-output description, i.e., which considers parameter uncertainty. For
several decades it was rather lonesome in the frequency domain, which was derided by the
dominant modern control society. However, times are changing and “the stone which the
bu.lders scorned has become the corner stone” [3].

The sensitivity function S = (1+L)! seems to be the natural design tool because it gives
directly
effect with feedback
open-loop effect

=S

and offers hope for analytical, automatic design. However it is very cumbersome for detailed
quantitative design, although it may be suitable for global measures an. global optimization
wherein one throws a variety of factors into a single cost function. But in multivariable design,
one is interested in detailed control of n2 input-output relations. It is difficult to discem and
achieve such detailzd control via a single scalar cost function. It has additional disadvantages. A

practical L = PG — k/s® as 8 — oo, 50 the first e leading numerator coefficients of S must equal
those of its denominator. If degme of S is e + m, only 2m free parameters are available for
design. This seems to be the reason why its compensation functions turn out so impractical in
terms of bandwidth, which is the principal cost of feedback.

Another important factor is high-frequency sensor noise effect at plant input, Ty =
(1- SYP. In this range IL <<, S 1,P>0, so Ty is highly insensitive to S. But written
as Ty = /P(1+ L) = L/P, it is very sensitive to L, and one sees the importance of fast decrease of
IL | atlarge . At | L 1 =103, an increase to 10-2 (tenfold) changes | S | at best from .999
to 99 (l%) ie., an msensmvxty factor of 1000 mmumnmwm

It is instructive too that Bode, the pioneer of feedback theory and the definer of the
sensitivity function S, did not use S for actual design, but instead used L, the loop transmission
function [4]. This was the choice of QFT at the outset [1]. Our commitment to detailed
quantitative design drove us to use L because of the vagueness of the global figures of merit. In
fact, I believe that once the decision was made that plant uncertainty was the problem and practical
quantitative design the objective, then the problem structure led QFT into the direction it has taken

10




since its beginning in 1959 [1]. An additional gift nature has awarded to QFT is its design
transparency, which is so often emphasized by its practitioners. One clearly sezs and has in his
grasp the important trade-offs hetween bandwidth, design complexity, sensor noise effects, etc.
This property and the close reiation of QFT to Bode’s work were sustaining sources during the
long, lonely period when QFT was confined to the wildemness by academia and by government

funding ajencies.

For about half a century feedback control concentrated on the filter problem, and neglected
its ability to cope with uncertainty. The following quotations are illustrative:

“... it is generally taken for granted that the dynamic characteristics of the process will
change only slightly under any operating conditions encountered during the lifetime of the
control system. Such slight changes are foreseen and are usuaily counteracted by using
feedback. Should the changes become large, the control equipment as originally designed
may fail to meet performance specifications.”

(Kalman (5])

“Conventional control systems are designed to meet certain specifications under certain
given conditions of the c.vironmert and the system parameters, but should these
conditions change, the performance will change as a result.”

(Gibson and McVey [6])

The above was the natural outcome of classical feedback’s concentration on the filter
problem. They were used to justify use of nonlinear compensation (so-called adaptive systems)
in problems amenable to relatively simple linear time-invariant (LTI) compensation. I believe that
I showed most of these arguments were invalid [7]. Successful QFT design for huge plant
uncertainties (1000 to 1) were published. It is also worth noting that this lack of appreciation of
the power of LTI compensation is widespread even today. Recently a student auditing a QFT
course did an example with plant uncertainty factor of only 10. His advisor was skeptical of his
results and performed the simulations himself. Modem control theory for many years appeared to
be concerned with the same problem as classical feedback control, the filter problem. However,
classical feedback contrel dealt in a relatively practical manner with the filter problem, whereas
modern control theory, with its apparent primary interest in existence theorems, often emerged
with unrealistic results. QFT was a pioneer in its re-definition of the basic purpose of feedback
control. QFT is “classical” only in that it uses the classical tool of frequency response, whereas in
the much more important sense of design objectives, it is modern feedback control which is
classical, actually ‘distorted classical,” because practicality is secondary to existence theorems.
After many vears, some universities have caught up with this fundamental truth.

3. PROGRESS OF QFT

Following the single-loop SISO design technique, two directions were obviously open.
One was to consider use of internal variables available for feedback, as in the SISO cascade-loop
structure. Frequency response and the Nichols chart as the synthesis tools were overwhelmingly
vindicated. One sees almost by inspection how the feedback burden shouli be allotted among the
locps, and the trade-offs between the loops, their bandwidths and their sensors. This is due to
the “pointwise synthesis” nature of QFT. Thus the actual plant uncertainty and the desired much
smaller closed-loop system uncertainty obviously impose constraints on the loop transmission
operator L(s), or equivalently on the sensitivity function S(s) = (1 + L)1, In QFT these are
translated into bounds on L(jw), separately at each o rather than on a global operator, following
the ancient technique of breaking a difficult problem into smalier easier problems. In a multiple-

1




loop system this feedback burden can be divided among several available loops. By doing so
separately at each o it is relatively easy to see the important trade-offs involved in this
apportionment of the “feedback burden.” It is very easy to see that it is overwhelmingly in favor
of the major burden on the outer loop in the low- region with respect to sensor noise effects,
compensator complexity and bandwidth, and that the opposite is true in the high-o region. Also,
it is easy to locate the critical ®-range in which the transition should be made, and how to do so.
It is enormously more difficult to do so by means of the more mathematically sophisticated global
operator technique. Furthermore, the transparency available in the pointwise technique, easily
seen by the ordinary engineer, is lost in the process. This is another major difference between
QFT and Hee with its use of a global sensitivity function. .

In this manner, systematic QFT design procedures were developed for a number of SISO
multiple-loop structures. However, the general SISO multiple-loop problem has not as yet been
solved in the QFT sense. It is an important problem over and above iis own sake, because the
general MIMO system with available internal feedback variables, can be rigorously transformed
into ]SISO multiple-loop problems whose solutions are guaranteed to soive the original MIMO
problem. ,

A second direction of QFT was in design optimization for the single-loop system. A
reasonable definition was made, and it was shown that the optimum exists and lies on its bounds .
for all @ values. It became obvious even then and much more so later, that there is ample room in
QFT for the mathematically oriented researcher whose primary interest is in existence theorems.

QFT has proceeded step by step to nonminimum-phase (NMP) systems, digital compensa-
tion, multivariable plants with and without internal feedback variables. It was proven that despite
contrary opinion, digitally compensated feedback systems are inherently inferior, in the sensitivity
sense, than analog feedback systems. An especially important QFT breakthrough was made in
time-varying and nonlinear feedback plants wherein the problem is reduced to rigorously
equivalent LTI problems. Two design techniques have been developed. In one, the nonlinear
and/or time varying uncertain plant set is replaced by a LTI set which is equivalent with respect to
the set of desired plant outputs. The following modelling is necessary for the nonlinear MIMO
case: Given a set of output n-vectors & = {y} and associated set of plant input vectors U =
{u}, find the set of n x n matrices P = (P} suchthat y=Pu. This is quite tricky in feedback
because it can be very important whether P is MP or NMP. But suppose both models appear to
give equally good resuits in the time domain? This problem is avoided to a large extent in the
second technique where the nonlinearities become equivalent disturbances. They have been
successfully applied to many multivariable problems, including man-in-the loop flight control.
The reader is referred to Reference 8 for a more detailed exposition of QFT progress.

4. FUTURE OF QFT

If one accepts the feedback problem in the QFT sense of design to achieve quantitative
performance specifications despite uncertainty, then the research problems are limitless. We are
living in a sea of  uncertainty, and nature depends on its myriads of self-correcting feedback loops.
Nature is far from delicately, fragilely balanced, as espoused by many. Thanks to its feedback
loops it is highly robust. History, especially recent history, has dramatically shown that it is
some of man’s economic and social sysiems which are delicately fragile. One might attribute this
to (1) ideological rather than empirical assessment of the plant (nature of man), and (2) woeful
ignorance of quantitative feedback theory. '

There are very many open areas of research even in LTI feedback theory: SISO and MIMO
internal variable fevdback even with all feedback returned to plant inputs, but more important with
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feedback returned to internal plant points, thereby introducing ‘plant modification’ {8]. The latter
has hardly been touched and is extmmclty important in biological, economic and organizational

systems. It can greatly reduce the cost of feedback in typical control problems if it is considered
in the original plant design. There is needed much more extensive, intimate experience in the
design of MIMO systems in order to achieve greater insight into the trade-offs between the loops
and the cost of feedback. 1 would urge much greater involvement of the theoretical researcher in
actual design. That is, in my opinion, the only way for deep understanding and consequent
practical research usefulness, and for formulation of deep, realistic research problems. QFT has
made its greatest progress by such interaction with practicality. There is hardly a single QFT topic
which is totally completed. In the NMP SISO system, is it possible to obtain better, simpler
criteria for the existence of a solution? A versatile loop-shaping program would be very useful in
general. We need more detailed tools for trade-off between loop bandwidth economy and design
complexity. I have not mentioned as yet distributed plants with input, output and control all
distributed, and the design tolerances are also distributed, very important in traffic control and

transportation.

QFT has only opened a door into feedback design for nonlinear, time-varying uncertain
plants. But the techniques may be far from the last word in design economy. Much more design
experience is needed with such plants. QFT has at least provided rigorous design techaiques
enabling such experience to be attained. Consider the vast amount of work in LTI feedback
theory, which is nevertheless far from complete, and the much greater complexity and importance
of nonlinear plants.

The most critical and challenging area is in non-LTI compensation. We have a pretty good
idea of the power and limitations of LTI compensation, whether for linear or nonlinear plants.
The only way to beat the game is by non-LTI compensation, and therein is the challenge.
Adaptive systems with their emphasis on identification are only one means of non-LTI
compensation. Consider the huge support it has received since its inception in the late 1950s.
Yet, I am not aware of any such adaptive design techniques which quantify their advantages, if
any, over LTI compensation. The only such techniques I know of have been done by QFT for
" oscillating adaptive systems, and to some extent for a specialized nonlinear element FORE (first
order reset element). In both, the design theory enables one to see beforehand the advantages, if
any, of non-LTI compensation and therefore if it is worth the extra complexity. In some problem
classes there is no option, as the problem is not solvable by LTI compensation.

Linear time-varying (LTV) compensation is an intermediate stage between LTI and
nonlinear compensation. The following QFT result is fascinating and provocative [9]. Consider
a lumped (ODE) uncertain nonminimum-phase, unstable SISO plant whose finite mimber of RHP
poles and zeros are close together. With LTI compensation a stable design is always possible for
a nominal case, but even in an optimal design [10], it remains stable for only very small
departures from nominal. LTV compensation permits its stabilization over a large class of
arbitrarily large uncertainty. However, the normally acute sensitivity to the plant is transferred to
the compensation. Very smail variation in the laster renders the system unstable. This is a
fantastic result. It is far easier to build a compensator (say a digital controller) with very narrow
tolerances than a plant whese power level can be billions of times greater. But even more
fascinating is this means of transfer of razor-edge sensitivity from one part of a system to another.
This is only a glimpse into the power of non-LTI compensation and a suggestion of how much
more powerful nonlinear compensation may be.

Non-LTI compensation is the means for radically changing the relation between cost of
feedback and its benefits, and of achieving results otherwise totally unatfainable. Its potentialities
are unlimited. However, I would advise the researcher to first obtain deep knowledge of LTI
feedback theory and its limitations. Also, do not attack this formidable opponent on too wide a
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front. It has been tried unsuccessfully for decades by many brilliant researchers in adaptive
control. Try first to squeeze out just a bit of profit in some area where the limitation of LTI
compensation is clearly delineated.

5. CONCLUSIONS
. Itis suggested that QFT is essentially what feedback control theory is all about. Itis only
in its infancy at present. Unlimited ~pportunities face the enthusiastic researcher in the unending
quest for achieving highly precise results, despite large uncertainty in the means of producing the
results. There is room in QFT for highly diverse talents: the nonmathematical practical engineer
with physical insight and inventive talent, the skilled mathematician interested in existence

theorems and abstract generalizations, up to the stubborn, even plodding researcher who by hard
dedicated work acquires deep understanding of his subject.
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BANQUET SPEECH

QFT INDUSTRIAL APPLICATIONS:
PAST, PRESENT, AND FUTURE

Dinner—Speech by Dr Eduard Eitelberg

Ladies and Gentlemen!

It is an exceptional honour to have been asked by Professor Isaac Horowitz and the conference
organizers to speak at this important meeting of people that have either grown up with or been
converted to QFT.

I assume that the number of QFT opponents or indifferents present is insignificant. Hence my
aim is not to bore you with what you know anyway — that the QFT is the best control system
design strategy and philosophy today. Having thus established my loyalties, I will try to stay on
the topic of my speech.

I would like to restrict attention to industry that produces goods, excluding for example the
tourism industry. Due to often vestly different financing philosophies I would like tc distinguish
between the military or defence industry and the non—socialist non-monopolistic (?)
market—related industry, whose product must be marketable at a profit although sometimes there
is very little difference in the actual production activity. It may not be a commonly accepted
classification, hut there are practical differences in control theory applications where the control
system is an inherent part of the manufactured product on the one hand and where the cortrol
system is part of the production process (hence "process control").

I am not qualified to svrvey the defence industry applications for various reasons. One is the
extreme confidentiality in this field. The other is that many of you know more than I do. Hence I
shall concern myself with the non—military industrial applications.

At another level, if "past" is what was before now, and if "future"” is after now, then there is no
need to talk about "present." Hence, for the purpose of this speech, I would like to consider the
last five years as "present" — this is in the order of magnitude that an idea may need to become a
marketable product.

With these clarifications, I can say that the QFT non-military industrial applications do not yet
seem to have a past. It has a presence in a few products, such as earthquake instrumentation,
welding machines and a few other confidential /classified machines. I actualiy requested data from
23 QFT related researchers and their acquaintances. To those 10 who responded — a big thank
you! Not one of them has reported process control applications of QFT. What is more, I do not
foresee in the near future significant QFT applications in the process control industry, the way
QFT is understood at the universities, unless dramatic changes of attitudes cccur among all
concerned groups. I would not be surprised if more and more products included feedback loops
desidgned with the QFT (or if there were fewer of them), this depends mostly on the attitude of the
academics. '

In the following I shall explain the reasoning for both of these statements and for the difference in
process control and control in products. Let us address the products first.

Designing a product usually involves experimentation in a laboratory—type environment. Most of

the respondents to my survey did not report laboratory application of QFT although some had
product development experience. I am convinced that if students are forced to control realistic
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laboratory experiments, some of them will be able to apply QFT in industrial products. There are
at least four academic institutions known to me where efforts are made in this QFT direction —
two are in the R.S.A. (at UDW and Wits) and two are in the U.S.A. (at AFIT and UMass)

What do I mean by a realistic experiment? [ mean an experiment that is not finished in an
afternoon. I mean an experiment where the student will have to specify the sensor and actuator
and will have to justify his control system specification by the currently available technology.
The experiment must educate tke student to modify or build systems that facilitate the
controiler’s performance. I realize that this may be too expensive for many universities and one
may have to use post—graduate supervised industrial training before a graduate becomes an
engineer. At least two such places are known to me — El-Op in Israel and Sandia National
Laboratories in the USA. There certainly are others. This engineering experience cannot be
replaced by QFT-CAD. ,

Process control is much more difficult to learn in a laboratory than control in a product, because
of the sheer size :ad expense of the usual plants. Furthermore, in my experience, QFT knowledge
and application skill has almost nothing to do with the chance of its application in the process
industry. Most industrial decisior makers do not understand control theory of any kind and
frankly find control thcoreticians to be a nuisance.

Let me try to put the above statements into some perspective.

The hardware and associated software in controlled systems can be classified as indicated in
Figure 1.

operators
controllersi¢
e e
{comnunication| {communication|
'}
§
[actuators] sensors
1}
< |Plant ]
inputs outputs & measurements

Figure 1: Hardware in (prccess) control systems.

Sensors, actuators, communication hardware (e.g. transmitters, I-to~P converters, signal
conditioners, multiplexers), and power supplies are called instrumentation in process control
circles.

A lot has been published in recent years about the design and reliability of (digital) controllers,
about their programmirg, hardware and software maintenance, operator interfaces, Distributed
Control System (DCS) communication via bus sysiems (as opposed to instrumentation
communication) and so on. ’

Concurrently, the appiication design aspects of instrumentation have been neglected by the
academic control community with the result that aimost the complete field of instrumentiation in

many areas of process industry is often handled by technicians and vendors. Universities,
generally, do not graduate instrumentation engineers (McMillan, G.K. and Weiner, S.: How to
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Become an Instrument Engineer — The Making of a Prima Donna, ISA, 1987).

The U.S. market for instruments and controllers was in 1989 about (US) $6 billion, it was
probably twice that in the world (Control Engineering, Oct. 1991). Total U.S. automation
spending was $33 billion. [Compare this to G.E. (U.S.) yearly turnover of $60 billion (Control
Engineering, Nov. 1991). Of this control spending only 3% vas spent in the aerospace industry
(Control Engineering, Oct. 1991).]

In process industry, probably most control related projects are carried out on existing plants as
retrofits. In an unpublished ICI presentation a typical "control" project cost break—down was
given as:

Contract Engineering: 11%

Own Engineering: 8%
Civil/Mech/Elec. Eng: 25%
DCS: 40%
Instruments: 15%
Benefits Analysis: 1%

Hence in an "average" (few hundred thousand U.S. dollar) control project, jusi over 50% is spent
directly on the control loop hardwate and associated (conﬁgurationg software — controllers (DCS)
and instrumentation. Only the benefits analysis actually deals with feedback control system
design aspects and specifications. In m) experience there is not even a separate heading in a
project for this activity, the management does not know about it and cannot care less, there is
nobody to talk to about QFT or any other control system design techriques. ©iten even the
Ziegler—Nichols tuning rules are not handled at the engineering level, the technicians use them for
better or for worse.

Of course, there are engineers who know better. But I am pretty convinced that QFT will have to
be sneaked into process control projects — and keep quiet, don’t frighten anybody.

I would like 1o tell you a little personal story. During a 10 month sabbatical leave from the
academic world, I acted as the coordinator between electrical, instrument, computer and boiler
tuilding companies for about one month during commissioning of a chemical recovery boiler.
That meant 20 hour work-—days and sometimes sleeping in my car on site.

Once, because it was not spelled out in the contract, because of incompetence of the computer
control cortractor and because the paper company was loosing about $§100 000 of production per
day, I volunteered to tune the control systems. There was no possibility of system identification
or literature study and the control coutractors said that it was impossible to get it right in less
than a week. I told them, "Watch me!" and tuned 26 loops in about half a day and a night. That

included running between the control room and the various actuators 2t the top of the boiler or

down at the fuel heaters in order to chack if the valves were limit cycling or why some outputs
reacted wrongly (mostly because of faulty equipment or manual by—passes). I succeeded, thanks
to QFT helping me to interpret what I saw. This all happened at about 30% load. Some time
later, at full load almost no retuning was necessary.

Some people hare suggested that more QFD—CAD is needed for its success. I think that good
CAD is needed in learning stages until one memorizes the individual moves of loop shaping etc.
graphically. During commissioning there is no time for elaborate designs and after commissioning,
"outsiders" are most unwelcome in the vicinity of the control room. If one could design a plant
like a product then the whole situation would be easier for QF T, but this is improbable because of
the cost and because most process plants are built by a combination of (sometimes rather
uncooperative) manufacturers.
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How can QFT be sneaked into process control? Firstly the "sneakers" must be educated with
realistic laboratory experiments and designs. This will lead to the recognition that in order to
apply QFT one does not have to design to uncertainty specifications. In the process industry one
can very seldom extend the loop bandwidth over the plant bandwidth, hence loop shaping
proceeds backwards from the stability mar=ins to steady state. The PI control structure with
measures against integrator wind—up is eminently suited for this approach — mostly fix the gain
and then find the shortest possible integrator time. One may have to design tu specified
regulating behaviour, but it must be recognized that this requires process redesign or fiuding and
eliminating limit—cycling loops in other parts of the plant more often than fancy controller design.

In relation to MIMO control, the processes are mostly designed so that single loops and their
common sense combinations are justified and can be tuned individually or in a common sense
sequence. Remember, "ordinary" people must be able to maintain these systems.

In both cases, SISO and MIMO, the most crucially neglected part of the control system is the
instrumentation. Instrumentation must be handled in QFT and alongside it. Instrumentation
limits the achievable performance and hence should be specified (at least) partly by the control
system designer in a quantitative manner. Furthermore, instrumentation fails very often and
(speaking to the younger generation) a successful control engineer must be able to use QFT for
extending instrument and plant life and reduce maintenance costs, down time and accidents.
Failure mode and process interlocking designs have yet t enter (seriously) the QFT—club. These
are presently important activities under the instrumentation and DCS headings of a project

. Therein lies hope. Control engineers with QFT background must become instrument and "DCS"
experts or stick to these experts in order to apply QFT. One could try and become a project
manager in order to be able to decide what is done during a project, but there seems to be a
universal incompatibility between simultaneous managerial and desizn engineering mind sets.

Finally, let me entertain you with a story about how important a single $2000 instrument can be.
A few million U.S. dollar boiler rebuild project in Africa was won by a world—leading
Scandinavian company. Their base price was close to cost, but a substantial premium was
payable if they managed to increase the fuel (black liquor) throughput by 20%. Their
commissioning engineers could not achieve this goal during the normal commissioning. During an
extended stay they almost achieved this, but just before they were at the goal they set the
precipitators on fire and in addition melted or burnt substantial parts of the ducting and
machinery. It took over a year for the respective lawvers to sort this mess out. The "culprit” was
a reputedly 0.5% accurate magflowmeter measuring the fuel flow rate. It had its regular so—called
calibration certificates (for the electronics, mind you) but its primary sensor had not been visually
checked for at least two years, before I checked it. I found that due to lining deformatior this
flowmeter measured about 7% less and hence the plant had already had 7.5% more throughput
before upgrade than conveyed to the unsuspecting contractors, who in effect were trying to
achieve 29% performance improvement. This was constructively impossible.
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LIST OF QUANTITATIVE FEEDBACK TﬁEORY (OFT) SYMBOLS
Version 1.0
Prxepared by
Professor C. H. Houpis
Air Force Institute of Technology
and
Flight Dynamics Directorate, Wright Laboratory
Wright-Patterson AFB, Ohio

July 11, 1991
Revised March 12, 1992

The awareness of the power of QFT to solve real world problems
has evoked the interest and involvement of a greater number of
control engineers and researchers. At the recent IFAC ACE and the
ACC meetings in Boston, MA, the QFT participants stated that this
increased involvement necessitates the establishment of a iist of
standard QFT symbols. They suggested the publication of this list
in order to avoid confusion to those trying to learn and understand
QFT and to enhance its acceptance and development into fertile
research areas and the solving of real world control problems.

This list is based upon the following:

1. The articles written by Professor I. M. Horowitz that are
listed in the References listing in "Quantitative
Feedback Theory (QFT)," Dr. C. H. Houpis, AFWAL-TR-86-
3107, Flight Dynamics Labora*ory. AF Wright Aeronautical
Laboratories, AFSC, Wright-rPutterson AFB, OH.

2. Chapter 21 of "Linear Contro: System Analysis & Design"
by D'Azzo & Houpis, McGraw-Hill Book Co., 3rd Edition,
1988.

3. Chapter 16 of “Digitai Contro. Systems: Theory, Hardware,
Software," by Houpis & Lamont, McGraw-Hill Book Co.,
2nd Edition, 1992.

4. Master Theses by the flight control students of the Air
Force Institute of Technolgy, Wright-Patterson AFR 9H

This is the first attempt in establishing a standard list of
QFT symbols. Based upon the use and the reviews and comments that
are obtained of this 1list a rew version, hopefully, will be
published periodically.
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ij = Tij

5

T..

6D(jm;)

e (J05)

Defintion

The specified peak magnitude of the
disturbance response for the MISO system

Arbitrarily large
Arbitrarily small

The desired lower tracking bounds for the
MIMO system

The desired upper tracking bounds for the
MIMO system

The desired modified lower tracking bound for
the MIMO system: a;;' = a;; + Arpy

The desired modified upper tracking bound for

The bounds on Lm L(jw;) for disturbance, B,
and tracking bounds, B;, respectively, and
the optimal bounds, B,, for the MISO system

Ultra high frequency boundary (UHFB) for
analog design

Ultra high frequency boundary (UHFB) for
discrete design

The Lm of the desired tracking control ratio
for the upper bound of the MISO system

The Lm of the desired tracking control ratio
for the lower bound of the MISO system

ftability bounds for the discrete design
Bandwidth

allotted portion of the ij output due to a
disturbance input

The (upper) value of Lm T,(jw,)
The dB difference between the augmented

bounds of B, and B_ in the high frequency
range '



6g(j“’i)

ij

D = (d”)

D = {p}

F, F

(£:;)

FOM

Q
(]
|

= {9g;;)

-4 oi i

LTI

-

The dB difference between B, and B, for a
given o,

The interaction or cross-coupling between the
of a MIMO systenm

MISO system disturbance input
The £x€ MIMO disturbance control ratio matrix

Script cap dee to denote the set of
disturbance inputs for a MIMO system U0V = (D)

The prefilter for a MISO system and the ext
prefilter matrix for a MIMO system
respectively

Figures of merit (see the D'Azzo & Houpis
text)

The compensator or controller for a MISO
system and the &xf¢ compensator or controller
matrix for a MIMO system, respectively. For
a diagonal matrix G = (g;)

The phase marg}n angle for the MISO system
and for the i~ loop of the MIMO system,
respectively

A function only of the elements of a square
plant matrix P (or P,)

A running index for sampled-data systems

-where k = 0,1,2 ...

The sampled time

The excess of poles over zeros of a transfer
function '

The optimal loop transmission function for
the MISO system and the ii loop of the MIMO
system, respectively

Left half-plane

Linear time-invariant
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MIMO

MISO

Mo, M

mp
nmp

NC

(M)

Multiple-input multiple-output; more than one
tracking and disturbance inputs and more than
one output

Multiple-input single-output; a system having
onetracking input, one or more disturbance
inputs, and a single output

The specified closed~loop frequency domain
overshootconstraint for the MISO system and
for the i loop of a MIMO systen,
respectively. This overshoot constraint may
be dictated by the phase margin angle for
the specified loop transmission function

Minimum phase
Nonminimum phase
Nichols chart

The number of plant transfer functions for a
MISO system or plant matrix for a MIMO system
that describes the region of plant parameter
uncertainty where § =1, 2, ... , & denotes
the particular plant case in the region of
plan: parameter uncertainty

the symbol for bandwidth frequency of the
models for Ty, Ty, and T = (t”)

phase marg%n frequency for a MISO system and
for the i'' loop of a MIMO systen,
respectively

Sampling frequency
MISO plant with uncertainty

£xm MIMO plant matrix where pﬂj %5 the
transﬁgr function relating the i'" output to
the 3*" input for plant case £ '

Script cap pee to denote a set that
represents the plant uncertainty for £ cases
in the region of plant uncertainty, i.e.,

$ = (P) for a MISO system and ¢ = (P} for a
MIMO system
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QFD

Q = (qij)

=

R, R = (r;)

RHP

T?(ju,)

The inverted plant matrix for plant case §
where ¢ = n

The ¢x¢ effective plant matrix when Py is not
a square plant matrix and W is an mx¢
weighting or a squaring-down matrix

Quantitative feedback design based on
quantitative feedback theory

An ¢x¢ matrix whose elements are given by
£ _ ¢
qy = /Py

Script cap que to denote a set that
represents the plant uncertainty for a MIMO
system , i.e., Q= (Q)

The tracking input for a MISO system and the
tracking input vector for a MIMO system,
respectively

Right half-plane
Sampling time

Script cap tee inconjunction with P or (qy)
denotes a template, i.e.,T P(ju;) andTqg(ju;)
represent the templates, for a given
frequency, for a MISO and MIMO plants
respectively

The desired MISO tracking control ratio that
satisfies the specified upper bound figures
of FOM

The desired MISO tracking control ratio that
satisfies the specified lower bound FOM

The desired MISO disturbance control ratio-
whichsatisfies the specified FOM

The MISO tracking and disturbance control
ratios for case £

The 2x& MIMO tracking control ratio matrix
for plant case §
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UHFB

v, v

W= (wij}

w =u + jv

Y, Y= (Yij)

Yri

Y4ij

The script cap tee denotes the set that
represents the tracking control ratios for E
cases, i.e.t Ta = (1;‘} for the MISO system
and T, =T(T,"} for the MIMO system

The script cap tee denotes the set that
represents the disturbance control ratios for
E cases. i. e., T, = (Tf) for the MISO
system and T, = (Tf} for the MIMO system

A set of assigned tolerances on t;;: r.; and
Taey = 241y, the assigned tolerances for
tiacking and disturbance, respectively

The €x& controller input vector
The ultra high frequency boundary .

The MISO prefilter output and the &x¢ MIMO
prefilter output vector, respectively

lim ,{Lm P, - Lm P,.] is the dB limiting
value for a MISO plant

. , . th
lim o Im (Qy()pex = LM (Qi;)pie] is the i loop
template dB limiting value for a MIMO plant

The weighting or squaring-down matrix

w'-domain variable; the use of u and v must
be interpreted in context

The output of a MISO system and the output
matrix of a MIMO system, respectively, where
Yij = Yoi * Yy

Ig that portion of the i®

i” input

output due to the

Is that portion of the i™ output due to the
disturbance input d;; (cross-coupling effect
or interaction of the other loops)
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Air Force Sponsor»ship
of

Quantitative Feedback Theory

P. Chandler
Flight Control Division
Flight Dynamics Directorate
Wright Laboratory
Wright-Patterson AFB, OH 45433

Introduction

This paper is an attempt to present, in approximate chronological order, the support provided
to Dr. Horowitz by the Air Force for ais research into control theory. It is not intended to be
complete, but to document the major milestones in the development of QFT achieved under
this support. The Air Force has provided real problems and this has resulted in significant
enhancements to the theory.

Air Force Support Prior to ’76

Air Force sponsorship of Dr. Horowitz’s work extends back almost 20 years. The earliest
this author could locate was from 1973. He was fundecd under a grant from Air Force Office
of Scientific Research (AFOSR) through their arm Kuropean Office Aerospace Research and
Development (EOARD) under grant number 73-2849. Indeed, much of the early Air Force
support for Dr. Horowiiz came through EOARD. ’
Under this grant he published the milestone paper entitled “Synthesis of Feedback Sys-
tems with Nonlinear Time-Varying Uncertain Plants to Satisfy Quantitative Performance
Specifications”, that appeared in the IEEE Proceedings in 1976. This paper presents an
approach to solve feedback control problems with uncertain nonlinear plants by means of an
equivalent linear time invarient (LTI) plant set. Schauder’s fixed point theorem is applied
to prove that the equivalent LTI plant set satisfies the original nonlinear problem. This
important milestone turns an uncertain nonlinear problem into an uncertain linear pioblem,
which is then solved in a conventional manner. Prior to-this there was no rigorous theory for
treating uncertain nonlinear control systems with quantitative performance specifications.
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Air Force Support From ’76-’77

During this period, sponsorship of Dr. Horowitz was provided by a grant, number AFOSR-
76-2946 from AFOSR to the University of Colorado, Boulder. At this time he held a chair at
the Weizmann Institute of Science, Israel and was also professor at University of Colorado.
His work on quantitative synthesis during this period is best described in the review paper
“Quantitative Feedback Theory”, which was published in IEE proceedings in '82.

He also worked in two other areas that are significant advances, one in adaptive control
- the other in plan! modification. \

One research area not normally associated with QFT is “adaptive control”. However, of
the various adaptive design techniques which have been proposed, the only one for which
there exists quantitative systematic design to specifications was done by Dr. Horowitz and
his students. This is the class of Oscillating Adaptive Systems developed in a series of
doctoral theses. Furthermore, the design theory tells the developer if and to what extent
the adaptive system is superior to a LTI design. Part of the work in adaptive coutrol is
documented in “A Synthesis Theory for Multiple-Loop Oscillating Adaptive Systems” and
published in International Control in ’79. This work presents the first quantitative design
effort in adaptive control.

Also during this period, Dr. Horowitz worked on plant modification. This is documented
in the paper “Synthesis of Multiple Loop Feedback Systems with Plant Modification” in
1JC in ’79. This approach is fer cascaded plants; for example, process plants and robotic
manipulators. For a cascaded plant, the feedback is permitted to proceed directly to internal
plant variables, constituting plant modification. This permits a drastic reduction in the cost
of feedback, in terms of loop bandwidth and effect of sensor noise. This is the first quantitative
work of its kind. The designer can achieve the desired trade-off between increased plant signal
level and cost of feedback. '

Dr. Horowitz's coauthors and students have not been mentioned, and this, by no means, is
intended to slight their efforts. Dr. Horowitz significantly contributed to controls education.

He has had a great number of students, and it is not possible to acknowledge them all in so
short a document.

Air Force Support From ’77-’78

This period signifies the first invoivement of the Flight Control Division of the then Air Force
Flight Dynamics Laboratory (AFFDL) and now the Flight Dynamics Directorate. This work
was sponsored under grant AFOSR-77-3355 to Weizmann Institute of Science, Rehovot,
Israel. This work is documented in the report AFFDL-TR-79-3120 entitled “Research in
Advanced Flight Control Design”. The monitors for this effort were in turn Capt. Terry
Tarr, Bob Poyneer, Bob Lemble, and Phil Chandler.

The objactive of this effort was to investigate feedback design techniques which can work
when the plant has significant uncertainty and there are exacting performance requirements.




Design techniques were to be developed for nonlinear systems and applied to a F-4B 3-axis
nonlinear control problem.

This effort is a landmark in the development of QFT. Before this time there was no syn-
thesis theory for control design that could incorporate uncertainty and performance bounds
quantitatively. Two breakthroughs were achieved yielding precise quantitative synthesis for
both linear and nonlinear time-varying, single and multiple input-output systems containing
plants with large uncertainties.

The first breakthrough was the development of the concept of LTI plant sets that, for
given inputs, are precisely equivalent to the nonlinear plant. This converts a nonlinear
problem into a set of linear ones.

The second breakthrough was in converting a complex Multiple-Input Multiple-Output
(MIMO) problem into a number of Single-Input Single-Output (SISO) control problems.
The tolerances on the output of one SISO loop appear as disturbanres in another loop. A
specified degree of decoupling s achieved in the process. This effort was applied to a F-4B
nonlinear 3-axis flight control problem. All of the performance specifications were completely
satisfied. Any other approach, at this time, would have been very conservative and required
numerous iterations.

Air Force Support From ’80-’83

During this period, the Air Force, through AFOSR (EOARD), sponsored an effort entitled
“Flight Control Design based on Multiple Input-Output Nonlinear Model with Uncertain
Parameters” at the Weizmann Institute of Science. This effort was initiated under grant
AFOSR-80-0213 and joint funded by EOARD (Maj Powell) and under the 2304N3 task
managed by Bob Schwanz, then later, Frank George. This effort is documented in AFWAL-
TR-83-3036 entitled “Multivariable Flight Control Design with Uncertain Parameters™.

This effort was to develop pitch pointing, yaw pointing, and direct side force control laws
for a YF-16 CCV model. The objective was to decouple the pitch, roll, and yaw axes so that.
for example, a yaw pointing command will have a small specified effect oo roll and lateral
acceleration. In addition, the pitch pointing mode would decouple pitch angle from normal
acceleration.

This is a major milestone in the development of QFT, for, in it’s application to the YF-16
CCV, it is the first practical application of the design technique of decomposing the MIMO
problem into 2 number of SISO feedback loops. This demonstrated the great flexibility of
QFT in controlling three outputs that are highly coupled. A significant step forward was
made when it was discovered that the YF-16 CCV did not satisfy the theoretical high fre-
quency condition. This event forced a significant advance in the theory, which demonstrates
the importance of applying theory to real problems by the academic researcher. The YF-16
CCV effort was first presented at NAECON, '81 in the paper entitled “A Synthesis Technique
for Highly Uncertain and Interacting Muliivariable Flight Control Systems”.

This period of time saw major advances in the theory. These advances were first presented
in the paper “Improved Design Techniques for Uncertain Multiple Input-Output Feedback
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Systems” in International Journal of Control, 82. It was shown that fixed point theory was
not needed to justify the theory. Simpler matrix algebra would suffice. Significant overdesign
was wrung out of the theory. The original theory is used for the first loop, then the exact
system equations are used for the other loops. This was motivated by the YF-16 CCV high
frequency bound problem. Also, arbitrarily small sensitivity constraints were taken out of
the design theory for those problems that did not require it in the specifications.

Also in this time frame, the Laboratory sponsored, and Dr. Horowitz conducted, a
short course in QFT. This course was entitled “Practical Design Techniques for Nonlinear
and Multiple Input-Output Feedback Systems with Large Uncertainty”. The course was
14 hours long over two days with 45 attendees from throughout Wright Patterson AFB. It
was conducted and video taped in the candid classroom at AFIT in Mar '82. The agenda
included: 1)quantitative LTI SISO problem, 2)example nonlinear problem y + ay*sign(y) =
kz, 3)nonlinear F-4B short period response, and 4)YF-16 CCV direct side force mode.

Air Force Support From ’83-’87

Robust Multivariable Control

This was a very productive period in the development of QFT. A number of papers were
written, of which only three are discussed. This period was typified by the variety of issues
delved into. The work came under the heading Robust Multivariable Control in the Flight
Control Division and was supported under contract F33615-83-C-3000.

Saturation: Control surface actuator rate and amplitude limiting is a real and critical
problem in flight control and for an unstable aircraft can resuli in departure. In the paper
“Quantitative Non-linear Design for Saturating Unstable Uncertain Plants”, International
Journal Control, '86, a nonlinear saturating element is introduced in the feedback loop. This
loop prevents saturation of the actuator. Unlike most techniques used today, the design
accepts large signals and can work close to maximum capacity. The system responds to the
large input signals with virtually no delay. There are many tricks developed over the years
for this problem, but this approach is one of the few with a good engineering-theoretical
foundation.

Non-Minimum Phase: It is well known that non-minimum-phase (NMP) plants restrict
the potential benefits of feedback. In the SISO case, a plant righ. half plane (RHP) zero
constrains the system transfer function to have a RHP zero at the same location. Modern
fighter aircraft are typically NMP in the longitudinal axis. The system can be stabilized,
but the stability margins may be quite small. In the paper “An Important Property of Non-
Minimum-Phase Multiple-Input Multiple-Output Feedback Systems”, IJC, ’86, this led to
the apparently hitherto unknown, but important fact that not all the rzn transfer functions
need suffer from the NMP liability. The MIMO capability allows the NMP liability to be
placed on a less important output, and the critical outputs can be minimum phase.

Discrete: All flight control syst« ms today are implemented digitally, i.e. are sampled-data
systems. Heretofore nearly all of the theoretical work in QFT has been continuous. In the
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paper “Quantitative Feedback Design for Sampled-Data Systems”, 1JC, 86, the theory is
developed for design in the ' domain. The detailed design procedure parallels very closely
that for continuous systems. Because of sampling, all digital coutrol systems arc NMP. The
design shows how this effect can be minimized with the sampling frequency for minimum
phase plants. For NMP plants the constraints are the same as in continuous time, which is
demonstrated quantitatively.

X-29 Study

The X-29 has very strong non-minimum-phase properties at some points in the envelope.
This results in a reduced benefit of feedback, and robustness (or stability margins) to pa-
rameter variations can be very small. Dr. Horowitz performed a brief study under contract
F33615-81-3201, problem number 426, to examine the robustness properties of the X-29. As
a result of these investigations, he rediscovered the singular loop transmission approach for
control design for NMP plants. The technique (which he calls singular G) has been used in
the past in an ad hoc manner, but he was the first to put it on a theoretical footing and
thoroughly explore it’s properties. The singular G name is derived from a G compensation
matrix that is not full rank. This means that at least one of the outputs is not independent,
i.e. two outputs have a fixed ratio. Ordinarily, this means giving up some design freedom,
but the NMP problem is eliminated and robustness to parameter variations is much greater
and the need for scheduling reduced.

Inherent Reconfiguration

The Self-Repairing Flight Control System (SRFCS) Program Office retained Dr. Horowitz
as a consultant to investigate inherent reconfiguration. The SRFCS program objective was to
develop and flight demonstrate a flight control system that would identify and isolate control
surface failures and damage, then reconfigure the control laws to maintain performance and
stability. Dr. Horowitz’s task was to explore control design techniques so that, even under
severe control surface failures, the tolerances can be satisfied automatically, with no need
of explicit identification and switching in of new (a prio:i designed) compensators. This is
deroted as inherent reconfiguration.

The primary motivation for this effort is that the control laws need to be sufficiently
robust for the period during which the identification is isolating the failure. The approach
taken by Dr. Horowitz is a natural extension of QFT, and clearly reveals the cost of feedback
needed. This enables the designer to make intelligent trade-offs between fixed compensation,
scheduling, and adaptation-identification. Identification, when it is necessary, can be done
more slowly and accurately when the design is stable over as many failures as possible. The
designs performed by Dr. Horowitz proved to be remarkably robust.

A SRFCS contractor, Lear Astronics, applied QFT to their design to maximize robustness
to failures. Elements of this design were flown in the real-time simulator.
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Air Force Institute of Technology Involvement - ’82 to
Present

During this time, Dr. Horowitz began his association with the Air Force Institute of Tech-
nology (AFIT). Based upon the success of his earlier work, the laboratory requested that
AFIT, through Professor C. H. Houpis, become involved with Professor Horowitz in a joint
QFT research and development effort. Since the early eighties, Professor Horowitz has been
an AFIT Distinguished Visiting Professor under the financial sponsorship of the laboratory
(now directorate). A number of AFIT Masters of Science thesis students have been in-
volved in this research and development effort, and has resulted in a number of journal and
conference publications.
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OVERVIEW OF

MISO QUANTITATIVE FEEDBACK THEORY (QFT) TECHNIQUE

Constantine H. Houpis
Air Force Institute Of Technology
Wright-Patterson AFB, Ohio, 45433, USA

INTRODUCTION"*

Quantitative feedback theory (QFT) has achieved the status as a
very powerful design technique for the achievement of assigned
performance tolerances over specified ranges of plant uncertainties
without and with control effector failures. This paper presents an
overview of the MISO QFT analog design technique!. The MISO QFT PC
CAD package demonstration on Tuesday afternoon will reinforcz this
overview. ‘

1. The MISO Control System

The overview of the QFT design technique is presented in terms of
the minimum-phase (m.p.) LTI MISO system of Fig. 1. The control
ratios for tracking (D = 0) and for disturbance rejection (R = 0)
are, respectively, . '

. F(s)G(s)P(s) . _FL :
Tp(s) T+ G(5)P(3) T+ T (1)
(2)
T, = P(s) - _P

1 + G(s)P(s) 1+L

or (3)

fl
R

T, = a constant

The tracking thumbprint specifications, based upon satisfying some
or all of the step forcing function figures of merit for under-
damped (M,, t,, t,, t, K;) and overdamped (t,, t,, K,) responses,
respectively, for a simple-second system, are depicted in Fig 2(a).
The Bode plots corresponding to the time responses y(t)y and y(t),
in Fig. 2(b) represent the upper bound B; and lower bound B,,
respectively, of the thumbprint specifications; i.e., an acceptable
response y(t) must lie between these bounds. Note that for the m.p.
plants, only the tolerance on |TR(jw9| need ke satisfied for a
satisfactory design. For nonminimum-phase (n.m.p.) plants, toler-
ances on /T, (jw,) must also be specified and satisfied in the design
process.”® It is desirable to synthesize the tracking control ratios
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corresponding to the upper and lower bounds Ty, and Ty, respective-
ly, so that §,(jw;) increases as w, increases above the 0 dB crossing
frequency of Tgy. This characteristic of §; simplifies the process
of synthesizing a loop transmission L,(s) = G(s)P,(s), where P, is
the nominal plant transfer function, that requires the determina-
tion of the tracking bounds By(jw;) which are obtained based upon
§3(jw;) . The simplest disturbance control ratio model is Ty(s) =
Y(s)/D(s) = a, a constant (the maximum magnitude of the output based
upon a unit step disturbance input).

2. Plant Templates of P;(s), SP(jw)

With L = GP, Eq. (13) yields

L
1+L

LmTR=LmF+Lm[ (4)

The change in T; due to the uncertainty in P is

L

1+L (5)

A(Lm T,) =Ln':TR—LmF=Lm[

By the proper design of L = L, and F, this change in T; is restrict-
ed so that the actual value of Lm T; always lies between By and B,
of Fig. 2. The first step in synthesizing an L, is to make templates
which characterize the variation of the plant uncertainty, as de-
scribed by j = 1,2, ..., J plant transfer functions, for various
values of «; over a speci- fied frequency range. For the simple
plant

Pls) = — X8 __ (6)

where K ¢ {1,10} and a € {1,110}, is used to illustrate how the
emplates are obtained for a plant with variable parameters. The
region of plant uncertainty is depicted in Fig. 3. The boundary of
the plant template can be obtained by mapping the boundary of the
plant parameter uncertainty region as shown on the Nichols chart
(NC) in Fig. 4. A curve is drawn through the points A, B, ¢, and D
and the shaded area is labeled $P(j1l), which can be represented by
plasti: a template. Templates for other values of w, are obtained
in a similar manner.

3. U-Contour

The specifications on system performance irn the frequency domain
[see Fig. 2(b)] identify a minimum damping ratio { for the dominant
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roots of the closed-loop system which becomes a bound on the value
of M, = M,. On the NC this bound on M, = M; [see Fig. 2(b)] estab-
lishes a region which must not be penetrated by the template of
L(jw) for all w. The boundary of this region is referred to as the
universal high-frequency boundary (UHFB), the U-contour, because
this becomes the dominating constraint on L(jw). Therefore, the top
portion, efa, of the M, contour becomes part of the U-contour. For
a large problem class, as w - ®, the limiting value of the plant
transfer function approaches

lim , _ K
omm [PUIO)] = = (7

where A represents the excess of poles over zeros of P(s). The
plant template, for this problem class, approaches a vertical line
of length equal to

A‘(3%12)[memx-mpmin]=z‘m&x-m]qﬁn-_VdB (8)

If the nominal plant is chosen at K = K,,, then the constraint M,
gives a boundary which approaches the U-contour abcdefa of Fig. 5.

4. Bounds B,(jw) on L,(jw)

The determination of the tracking By(jw;) and the disturbance By (jw,)
bounds are required in order to yield the optimal bounds B,(jw) on
L,(jw;) . The solution for Bi(jw) requires that the actual

ATg(jw;) < 63(jw) dB in Fig. 2(b). Thus it is necessary to determine
the resulting constraint, or bound By(jw;), on L(jw). The procedure
is to pick a nominal plant P,(s) and to derive the bounds, by use
of templates or a CAD package, on the resulting nominal transfer
function L, (s) = G(s)P,(s). The disturbance bounds can be determined
by the method described in Reference 2. For the case shown in Fig.
6 B,(jw) is composed of those portions of each respective bound
By (jw;) and Bp(jw;) that have the largest dB values. The synthesized
L,(jw;) must lie on or just above the bound B jw) of Fig. 6.

5. 8Synthesizing (or Loop S8haping) L,(s) and F(s)

The shaping of L,(jw) is shown by the dashed curve in Fig. 6. A
point such as Lm L,(j2) must be on or above B,(j2). Further, in
order to satisfy the specifications, L,(jw) cannot violate the U-
contour. In this example a reasonable L,(jw) closely follows the U-

contour up to w = 40 rad/sec and must stay kelow it above w = 40 as

33




shown in Fig 6. It also must be a Type 1 function (one pole at the
origin). Synthesizing a rational function L (s) which satisfies the
above specification involves building up the function

. , . 4 s (9)
L,(jw) = L,(jw) =P0(Jm)kﬂo[Kka(Jm)]

where for k = 0, G, = 1/0°, and K = II",_K,. L,(jw) is built up term-
by-term or by a CAD loop shaping routine,’ in order to stay just
outside the U-contour in the NC of Fig. 6. The design of a proper
L,(s) guarantees only that the variation in |T,(jwi) is less than
or equal to that allowed, i.e., 6x(jw). The purpose of the pre-
filter F(s) is to position Lm [T(jw)] within the frequency domain
specifications, i.e., that it always lies between B, and B, [see
Fig. 2(b)] for all J plants. The method for determining F(s) is
discussed in the next section.

6. Prefilter Design!’*

Design of a proper L,(s) guarantees only that the variation in
|TR(jw) | is less than or equal to that allowed, i.e.,

§p(jw) < A[Lm Tg(jw)]}. The purpose of the prefilter F(s) is to
position

; - L{jw) (10)
Lm T(jow) Lm T+L(j0)
within the frequency domain specifications. A method for

determining the bounds on F(s) is as follows: Place the nominal
point of the w, plant template on the L,(jw) point of the L, (jw)
curve on the NC (see Fig. 7). Traversing the template, determine
the maximum Lm T, and the minimum Lm T,, values of Eq. (10)
obtained from the M-contours. Based upon obtaining sufficient data
points, for various values of w, and in conjunction with the data
used to obtain Fig. 2(b) the plots of Fig. 8 are obtained.
Utilizing Fig. 8, the straight-line Bode plot technique, and the
condition

Lim pigy =4 (11)

s=0

for a step forcing function, an F(s) is synthesized that lies
within the upper and lower plots in Fig. 8. :
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7. 8imulation

The "goodness" of the synthesized L,(s) and F(s) is determined by
simulating the QFT designed control system for all J plants. MISO
QFT CAD packages are available that expedite this simulation phase
of the complete design process (see Appendix).

8. MISO QPT Discrete Design Technique™*

The bilnear transformation, z-domain to the w'-domain and vice-
versa, is utilized in order to accomplish the QFT design for both
MISO and MIMO sampled-data control systems in the w'-domain. This
transformation enables the use of the MISO QFT analog design
technique to be readily used, with minor exceptions, to perform the
QFT design for the controller G(w'). If the w'-domain simulations
satisfy the desired performance specification then by use of the
bilinear transformation the z-domain controller G(z) is obtained.
With this z-domain controller a discrete-time domain simulation is
obtained to verify the goodness of the design.

Appendix -- QFT CAD PACKAGES
A. INTRODUCTION

The first useable MISO QFT CAD package was developed, in 1986 for
the analog design and in 1991, for the discrete design at the Air
Force Institute of Technology (AFIT). This CAD package has been a
catalyst in assisting the newcomer to QFT to understand the
fundamentals of this powerful design technique.

A.1 MIBO QPT CAD -- The AFIT package is called "ICECAP/QFT" which
is designed for the VAX. Those desiring a copy of this package can
contact: Professor Gary B. Lamont, AFIT/ENG, Wright-Patterson AFB,
OH 45433. Currently Professor Lamont is developing a PC version of
this package. These packages have been designed as an "educatlonal
tool."

A.2 MIBO QFT PC CAD -~ Dr. Oded Yaniv, Tel-Aviv University, Israel,
has a MISO QFT PC CAD package for both analog and discrete system
‘design.

A.3 OTHER8 -- Professor F. Bailey, University of Minnesota,
Minneapolis, Minnesota, has also developed QFT CAD packages. The
QFT CAD packages mentioned in this Appendix will be demonstrated
Tuesday afternoon during the symposium.
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MIMO QFT CAD

A MIMO PC QFT CAD package was developed by Mr. Richard R. Sating as
a Master thesis, under the direction of Professor C. H. Houpis, for
his AFIT MS degree. This package was designed to handle MIMO
control problems of arbitrary dimensions for both the analog and
the digital case with the option to use the improved method during
+he design. This package will also be demonstraed on Tuesday
afternoon. '
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SYNTHESIS OF UNCERTAIN MIMO FEEDBACK
SYSTEMS BY QFT - A TUTORIAL

ODED YANIV*

Abstract

In the QFT design technique for MIMO uncertain feedback systems, the objective is to de-
sign the controller and prefilter such that given closed loop spacifications are achieved over a
given range of plant uncertainty. This tutorial uses a two input two output plant to explain
the properties of the QFT technique for linear time invariant systems, which are: (1) Design to
plant uncertainties both in model and disturbances, (2) Design to performance specifications,
(3) Empbasize ‘cost of feedback’, (4) Flimination of underdamped closed loop behavior if pos-
sible, and (5) the design procedure is always reduced to a sequential SISO and/c: MISO design
process whose bounds can be calculated in a closed form.

*Faculty of Engineering, E.E.-Systems, Tel-Aviv University, Tel-Aviv 69 978, Israel.
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1 Introduction

The synthesis of MIMO feedback systems with uncertain plants (Wendell, 1988 ) is a problem
which has aroused a great deal of interest. Some of \ue most important synthesis methods
are H,, (Francis, 1987), Adaptive Control (Astrom, 1985), the British school (Mayne 1979,
Rosenbrock 1974) and the QFT method (Yaniv and Horowitz, 1986). In addition to robust
stability and performance, a good synthesis technique should meet the demands of low cost of
feedback solution, no internal conditionally stable loops if possible, and gain and phase margin
specifications. The last property has been discussed in several papers using various definitions
of gain and phase margin, for example (Davison 1986, Sobel 1983 and Tannenbaum 1986).
The definition adopted by QFT emphasizes the distance from the critical point -1 of the loop
transfer function at different channel breaking points. In general terms, this implies a smooth,
not underdamped, time response for tracking commands as well as disturbances at the plant
output. -

The tutorial is set out as follows: The problems QFT solves are defined in Section 2, while
Section 3 develops the design process for the basic tracking problem, and Section 4 is devoted
to a design example.

2 Definition of the Problem

In Fig. 1 P = [p;;(s)]! is a linear time invariant plant model. Due to plant uncertainty P can
be any member of a given set denoted by P. For all i,j =1,...,n, let the following definitions
hold: .

o a;j(w) - a non-negative function of w.

@ b;j(w) - a positive function of w, &; > aj;.

o m;(w) - a positive function of w, exists wy and 2; such that m;(w) < z; <1 for w > w;.
o y#(w) - a positive functions of w.

o F =[f;;] - a prefilter.

¢ G = diag(g;) - a strictly proper controller.

e TR = [tij] = [I + PG]~'PGF - the transfer function from r; to y; in Fig. 1.

e Tp = [dij] = (I + PG]~'P - the transfer function from plant input j to  in Fig. 1.

e D = {D}, a set of disturbances at the plant input.

o L} - the true loop transmission from the input at ¢; (of Fig. 2), where only the channel
at e; is disconnected, derived as follows: feed an impulse into ¢f and measure the signal
returned to ¢;, the transfer function of the latter is L7,

® wq - this frequency is defined as the frequency above which the disturbances are of low
magnitude and sensitivity to plant variations is not important {since at hizh frequencies
the benefits of feedback are negligible).

The problem QFT sclves: find F and G to satisfy (1-4) below for all P € P:
o Stability: the closed loop system

Tg ={[+PG]"'PGF 0]

is internally stable.

1Throughout this paper, all matrices are n by n whose elements are proper rational transfer functions.
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¢ Closed loop performance: For a given wq, a;; and by;
aig(w) < [ty (i)] < bij(w); fori,j=1,...,n, andw < w, 2
o Margin performance: For i = 1,...,n, the i-th loop stability margin satisfies:
N+ L} >2miw); i=1,...,n. (3)
o Disturbance rejection peiformmce: For each member D of D
(TpDk <, i=1,.,n. (4)

Remark 2.1 Inequality (3) wsed by Horowitz (1972) is not identical to the gain and phase
margin found in classic conirol texis (See D'Azzo and Houpis, 1988), but rather the ‘closest
distance to the critical point -1’ of the transfer function L, which is given by the value D;i(w).
For ezxample if D;(w) = 0.5, the gain and phase margin are 6dB and 30° respectively.

Remark 2.2 For F = I and for a diagonal controller G, ti; = L? /(1 + L?), is the transfer
Junction from input r; 1o output y (O’Reilly, 1991). A proper choice of mi(w) will eliminate
any underdamped behavior of t;;, so that the uncertain MIMO system will then ezhibit a belter
time response similar to that seen in SISO systems. The same is valid for output y; due to
disturdance at the plant outpst i, since ils transfer function is (1 + L7)~).

3 The Design Procedure

The Horowits MIMO design method (Yaniv and Horowitz, 1986) which is concerned with sat-
isfying (1-2), turns the design process into a sequence of MISO problems. The solution of
each MISO problem is the controller g; and the prefilters fi;, j = 1,...,n (each f;; being due
to the clased loop specifications from input at j to output at i), giving a combined solution
G = diag(g;] and F = [f;;] for the MIMO system. The main task during the design of each
MISO problem is to find bounds on an open loop transfer function. Each bound is a closed curve
on the complex plane dividing the latter into two regions, one of which is called o{w), so that if
the open loop transfer function at frequency w belongs to o(w) and satisfies the Nyquist stability
criterion, the synthesis procedure must work. In order to satisfy each of the performances (1-4),
more constraints are placed on each of the MISO problems. T3 the permissible region o(w) is
reduced, which in turn implies a solution for the MIMO.system, if a solution is found. This is a
kind of simultaneous stabilization problem with constraints, i.e., at each step, g; is designed so
that the bounds are satisfied and the same controller g; stabilizes a given set of plantas.

~ 3.1 Stability and Closed Loop Performance

Consider the feedback syetem shown in Fig. 1. Let (i3,...,in) be a given order of the integers
(1,...,n), and P* = [p%] be defined recursively as follows:

bilj] =P}
Eel k-1

M=t PP L =i
- - ’ S a1y 1=y in 5
(pis] [Pq 2T+ on h~1 ke (5)

Based on the sequential loop closure technique of Mayne (1879) and Rosenbrock (1974), it is
shovn that (for the sake of clarity iy = k and the superscript k denotes the recursive step




number):

fimet  dha .
ti; = - ii=k..,ni=1...,n 6
] 1+g.'4.-5 1+ﬂiq.'b L] 3 d y ’ ) ( )

where
= Y phtu+ Y Phtuidt=1/pk ™M
u=1,. k=1 u=h4l, .. .k .
Clearly, t;; does not depend on & or on the chosen recursive order (i,...,in) and ¢¥ does.
Hence (6) gives (n ~ k + 1) equations for #;; as a function of ¢*. Equations (6-7) reduce the
MIMO problem into n? MISO problems in the following way. At step m, (m = 1,...,n), the
designer obtains the scalar transfer function gm and finj (j = 1,...,n) so that forall P ¢ P

bt mj ImTm a’vnnj qm

; < - < gmji{w); w <
amj(w) < |1+qu.','.‘ l+gmqg:|_am1(w)l“’..“o
1 ..
m 18 mtemally stable. (8)

where d7,; is assumed (in the Horowitz MIMO technique) bounded by
I Z pfufu:'l + E i.ubuil
u=l,..,b=1 uw=kel,...b

Remark 3.1 The gm and fn; designed for j = 1,...,n, are used to define the parameters of
the nezt step (step m + 1, Eguations (6-7) for i = m+1). After n steps, all g; and f;; are
known and the design process comes o an end.

Remark 3.2 Step m is equivalent to solving n uncertain MISO problems with the same con-
troller g, and n prefilters f.,;, which can be solved within the framework of the QFT technigue.
Moreover, a parameter z can be chosen, generally between 0.5 and 0.8, s0 that |(1+gmgm )| > 2.

3.2 Margin Performance
In order to satisfy the margin conditions 3, i.e,.

N+ L >2mi(w); i=1,...,n. 9)
the bounds for gi should also guarantee [15]
4 Ll > mo(w); i=1,..., k. (10)

The solution of these inequalities, to find bounds on g; such that (10} s true, is a closed curve in
the complex plane which can be calculated for each case and phase of g, by solving a quadratic
equation. The bound on g; will be the union of bounds due to all the constraints. In the trivial
2z2 case this may decrease the allowed region for the second step (say design gz) such that

a3
P21 — prapn/(;y

g1
!

1+ > dy(w); |14
pll‘PlzPﬂl/(p”-}-g,)' 1(w); |

e L OB

The solution of these inequalities, to find bounds on g, such that (11) is true, is a closed curve in
the complex plane which can be calculated for each case and phase of g2 by solving a quadratic
equation. The bound on g3 will be the union of bounds due to all the constraints.
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4 A 222 Example

4.1 Plant and Performance definition

o Plant Model:
p=1 [ ki kg ]
s | k2 ka2

(12)
o Plant Uncertainty: ky; and ks in [2 ~ 6], k43 and k3 in [0.5 ~ 1.5)

e Closed Loop Performance: Are given on [ti;], off diagonal tracking elements less than
~20dB and the diagonal satisfy the constraints given in the following table:

[w__ 011,003 a11,023 |
1 1l 0.9
2 11 0.8
3 10 0.6
5 07 0.2
10 0.1 0

4.2 Design Execution
4.2.1 Design step #1

Find a solution to the two MISO feedback systems described schematically in Fig. 3, i.e., find
g1, fu1 and fi3 such that for all plant cases and |t;;| < &;;

a11 < [t] < bn1, and a13 < |t13| < bra. (13)

Since the off-diagonal should be as small as possible, the choice fj3 = 0 and f; = 0is reasonable.
Thus the solution of the MISO problems

Jusiqu , , dnqu/aa baaqui/q12
all < 1+ < bll, j——==—=
'1+mu' 'l+mcnl ’ l1+smm

is a solution to step #1. The bounds and nominal loop transmission are given in Fig. 4. The
controller and prefilters are:

l<b12 © . (14

- 5(1 +3/45) . - 1 ‘ B
n= (l + 8/5)(1 +‘8/l40+,2/1402)' = 1+ 1-4'/2.54_ ‘3/2'52o fia=0. (15)

4.2.2 Design step #2

Find a solution to the two MISO feedback systems described schematically in Fig. 5, i.e., find
g2, f21 and fa3 such that for all plant cases and |t;;] < b5

ag < [ta1| < ba1, and an < |taa] < b (16)
where - )
2 .1 _ PiPn 2 P
P2 = P Pt da; ;%i‘fu 17)
and
g3 = 1/p% (18)
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The bounds and nominal loop transmission are given in Fig. 6. The controller and prefilters

e _ Bt 1 =0
= T+ a8 2= Tiianas 0=t

(19)

4.2.3 Frequency Domain Simulations

The next table gives upper and lower values for the closed loop transfer function diagonal ele-
ments and upper values for the off-diagonal values.

w 1 2 3 5 10
t;y 0.99-0.99 0.86-0.85 0.59-0.58 0.26-0.25
tiz 1.00-1.00 0.94-092 0.75-0.52 0.39-0.35

ta 0.02 0.04 0.05 0.05
_t:z 0.04 0.07 0.08 0.07
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A Delta Transform Approach to Loop Gain-Phase Shaping DeSign of
Robust Digital Control Systems’

A.J. Punyko®
F.N. Bailey*

Abstract: This paper addresses the existence of loop gain-phase shaping (LGPS) solutions for the design of robust digital
control systens for SISO, minimum-phase, continuous lime processes with parametric uncertainty. We develop the
frequency response properties of LGPS for discrete time systems using the A-transform, a transform method that applies
to both continuous and discrete time systems. A theorem is presented which demonsirates that for reasonable
specifications there always exists a sampling period such that the robust digital control problem has a solution. Finally,
we offer a procedure for estimating the maximum feasible sampling period for LGPS solutions to robust digital control
problems.

1. INTRODUCTION

The Loop Gain-Phase Shaping (LGPS) approach to robust control system design uses
closed loop performance and relative stability specifications, combined with a model of process
uncertainiy, to define complex plane gain-phase constraints on the nominal open loop gain
function. The designer then "fits" a realizable nominal loop gain function L(s) to these
constraints and uses L (s) to obtain descriptions of the necessary compensation networks. The
LGPS concept for single-loop, analog, robust control system design was originally proposed by
Horowitz in (Horowitz 1963) and later combined in the general framewcrk of quantitative
feedback theory, or QFT (Horowitz 1982). In (Bailey and Hui 1991) it was shown that for SISO
robust control system design, LGPS has performance advantages over traditional loop gain
shaping and its derivatives (LQG/LTR, H_-Optimization, etc.). Moreover, LGPS allows the
control system designer to directly attack the robust performance problem, unlike other methods
which indirectly address robust performance by solving a stabilization problem.

The fitting of a realizable nominal loop gain function to specification/uncertainty
generated gain-phase constraints is the difficult part of the LGPS design procedure. Although
several iterative search approaches have been demonstrated, no closed form solution exists (Gera
and Horowitz 1980; Thompson 1990). An important unresolved question involves the existence
of solutions to the fitting problem. If one plans to use an iterative search approach to the
solution of this problem, it is important to know whether a solution exists. In (Bailey and
Cockburn, 1991), a mathematical formalization of LGPS was used to study the existence of
solutions to the fitting problem in the continuous time case. There it was shown that in the case
of minimum phase (but possibly unstable) processes with only parametric uncertainty, a fitting
solution (and thus a solution to the LGPS design problem) always exists if there are no
constraints on the open and/or closed loop bandwidth. However, fitting solutions in the case of
non-minimum phase processes is problematical (Horowitz and Sidi 1978).

The increasing popularity and flexibility of digital controllers has lead to the adaptation

"This work was supporied in part by a grant from FMC Corporation.

*Depanment of Elcctrical Engincering, University of Minnesota, 200 Union St. $.E., Minneapolis, MN 55455, USA, 612-
625-7808.
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of LGPS concepts to the design of digital control systems. This problem was considered in
(Horowitz and Liao 1986). However, these authors merely present a design example in order to
show the effects of sampling on the continuous time LGPS problem. Additional papers on QFT
design of digital controllers (Yaniv and Chait 1991; Lamont, Houpis, and Ewing 1991) have
primarily focused on design techniques. Unfortunately, none of these papers discuss the
existence of discrete time LGPS solutions. In fact, because discrete time plant models are
generally non-minimum phase, for a fixed sampling penod there may be no solution to discrete
time LGPS problems.

In this paper we adapt the mathematical formalization of the LGPS problem as described
in (Bailey and Cockburn 1991) to address questions about the =xistence of solutions to discrete
time LGPS problems in the case of parametric uncertainty. We will assume that the discrete time
robust control problem arises in the context of digital control of a continuous time process. Thus,
we will assume that the discrete time process is the step-invariant equivalent (or zero-order hold
equivalent) of a continuous time process which is finite-dimensional, linear, time-invariant,
minimum phase, but possibly unstable. A glossary of notation and definitions is provided in the
Appendix.

‘2. THE CONTINUOUS TIME ROBUST CONTROL PROBLEM

Given a process model with uncertainty, a model of external disturbances, and desired
stability and performance specifications, the goal of the general robust feedback control problem
is to design a controller such that the closed loop system meets the desired stability and
performance specifications.

Because the LGPS approach assumes that only the process inputs and outputs are
available, the most general controller configuration is the two-degree-of-freedom structure (TDF)
(Horowitz 1963). Given the particular TDF structure shown in Fig. 1, the LGPS approach to the
robust control problem is to choose a loop compensator G(s) and pre-compensator F(s) such that
the closed-loop transfer function T(s) meets the desired stability and performance specifications.

In the next sections, we outline the continuous time LGPS robust control problem and

then summarize the continuous time LGPS existence conditions detailed in (Bailey and Cockburn
1991).

2.1 Problem Description

The Process Model

Throughout this paper, we model the continuous time process as an arbitrary SISO
dynamic system with parametric uncertainty. Formally, we have this set of assumptions about
the process model, P(s).

Assumption 1C: We assume that the continuous time process model P(s;a) is finite-dimensional,
linear, time-invariant (FDLTI) and has only parametric uncertainty. We assume a transfer
function model of the process in the form




Y boys’
P(s) = P(s;a) := _.'2_.___. with a € A, c R?, n>m

Yy a(a)s)
j=0

where the coefficients b,(¢) and a(a) are uncertain due to underlying uncertainty in some model
parameters o (e.g., masses, gains, inertias, etc.) and A, is a compact set of parameter variations.
We also assume that there is a nominal parameter vector o€ A, which defines the nominal
process model: P.(s):=P(s;0,). Also, we consider only those processes that are minimum-phase
(i.e., no closed RHP zeros), have no uncertain poles on the jw-axis for all @€ A, and assume that
a,(@)b,(0)>0 for all ac A,. We define the pole-excess of the process as r=n-m>0.

L R =02 6s) L] P(s) «-J)— J

F(s) = Pre-compensator

G(s) = Loop Compensator

P(s) = Process Model

L(s) = P(s)G(s) = Loop Gain

T(s) = F(s)L(s)/[1+L(s)] = Closed Loop Transfer Function

Fig. 1. A TDF Feedback Control Structure.

Performance Specifications :

. We assume that the closed loop performance specifications’ are given in terms of bounds
on allowable variation of IT(jw)} 0 < a(w)c(w) € ITGw) | € blw)c(@) < =, where a(s), b(s),
and c(*) are real-valued functions of @. Thus, for each @ we define 8T(w):=In[b(w)/a(w)] as the
allowable logarithmic gain variation in T Gw) | :

Assumption 2C: We assume that the performance specifications dT(w) satisfy the fact that
8T(w)21(w), where t(w) is real-valued, non-negative, non-decreasing, and T(®w)—ree as W—roo.

"For simplicity we will consider performance boundaries related to robustness in the presence of process uncenainty.
Similar performance boundaries can be developed for robustness in tie presence of external disturbances. The results of
this paper easily generalize in the case where both types of performance boundaries are considered.
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The above assumption means that closed loop performance is required only for "low" frequencies.

Stability Specifications
Throughout this paper, we assume that the stability (and/or relative stability) specifications
are given in terms of a desired Nichols plane gain-phase region surrounding the (-180°, 0 dB)
point For simplicity, this specification will be described by a rectangular region,
5,:=(G,".G.®,".®,), as shown in Fig. 2.

0d8

18049, -180+4,,

-180"

Fig. 2. Stability Specification Region $,=(G,*,G,,,®p" Pn)-

Assumption 3C: We assume that the stability specifications S, satisfy the restrictions that €’
and G,;* are bounded, while ®,*<[0°,180°] and &, 'e[-180°,0°].

2.2 The Continuous Time LGPS Solution

Given a process model P(s) and specifications on desired performance and relative
stability, the loop compensator G(s) and the pre-cotnpensator F(s) of Fig. 1 are chosen through
a procedure based on the following six steps:

1§ Development of process uncertainty templates describing proccss gain and phase
- variations due to (parametric) uncertainty.

2) Use of these templates, closed-loop performance specifications, and a model of the
external disturbances to develop "performance boundaries” describing gain-phase
constraints on acceptable nominal loop gain functions, L(s).

3) Use of the templates, along with system stability and/or relative stability
specifications to develop "stability boundaries” describing additional gain-phase
constraints on acceptable L (s).

4) Fitting a realizable, nominal loop gain function L.{s) to the gain-phase constraints
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represented by the performance and stability boundaries.

5) Manipulation of the resulting L (s) to extract a description of the loop compensator
G(s).

6) Selection of the pre-compensator F(s) to shape the closed-loop transfer function,
T(s)=F(s)L{s){1+L(s)].

The mathematical objects and procedures described above (e.g., templates, boundaries,
fitting, etc.) are all based on modifications of classical frequency domain design procedures
which reflect the LGPS assertion that both gain and phase information should be used where
available. Moreover, these objects can be represented in either the C-plane (the complex plane)
or the N-plane (the Nichols or gain-phase plane). Both of these representations have their
advantages at certain steps in the development of LGPS theory. A complete discussion of these
issues can be found in (Bailey Cockburn 1991). A brief summary of that discussion follows.

Uncertainty Templates

For each frequency we [0,%), the process uncertainty region or template' Q() is a set
of points in the N-plane representing all possible uncertainty induced values of the normalized
process transfer function P(jw)/P,(jw). A useful viewpoint is that, for each ®, the set Q(w)
represents a region of gain-phase uncertainty about the nominal process P,(jw). Thus, for each
20, we define Q(w) as

Q(w) := {(¢.g)eN: ¢=arg[P(jw;)/P (jw)], g=ln|P(jm;a)/P°(im)| for all ae A}

Use of the normalized process causes al! of the templates to have their nominal points located
at the point (0°, 0 dB) in the N-plane. Since G(jw) is assumed to have no uncertainty, the
template Q(w) also represents the gain-phase uncertainty of L(jw)=P(jw)G(jw).

In the limit case as w—eo, the parametric uncertainty templates approach a vertical line
in the N plane. This template is called the "high frequency uncertainty template” and is denoted
by Q(e<). In the N-plane, Q(eo) is a bounded vertical line with nominal point located at (0°,0
dB). The high frequency template plays a major role in the demonstration of the existence of
both continuous and discrete time LGPS solutions.

Performance Sets and Boundaries

Given a template Q(w) and performance specifications 8T(w), for each w, the performance
set B(w) describes an N-plane region that acceptable nominal loop gain functions,
L,(j0)=G(jw)P,(jw), must avoid in order to satisfy the robust performance specifications. The
boundary of B (w) is called the performance boundary and is denoted 9B (w).

It is also known that, for all w20, the performance sets B,(w) are bounded in magnitude

"The uncentainty templates Q(w) gencrated by the normalized process P(jw)/P,(jo) are LGPS versions of the multiplicative
uncertainty terms 1+D_(jw) in PGw)=P,(jw){ 14D, (jw)].
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and enclose the N-plane point (-180°, 0 dB). In the limit case as w—eo, the performance sets
B,(w) converge to a high frequency performance set By(e=), which is itself a vertical line located
at the point (-180°,0 dB). This property arises from the facts that 8T(w)—> and Q(w)—=Q(e),
as —eo,

Stability Sets and Boundaries

Given a template Q() and the stability specifications S,, the stability set B,(w) describes,
for each @, another N-plane gain-phase region that any acceptable L (jo) must avoid in order
to satisfy the robust stability specifications. The boundary of the stability set is called the
stability boundary and is denoted 9B, ().

The stability sets B,(w) are also bounded in magnitude and enclose the N-plane point
(-180°, 0 dB). In the limit case as w—eo, the stability sets B,(w) approach a single high-frequency
stability set, denoted B,(<). This high frequency stability set will also have a rectangular shape
in the N-plane. In addition, there is a frequency ®,>0 such that B (w)cB,(w) for all @>w,. Thus,
at frequencies greater than w, any L,(jw) satisfying B,(w) automatically satisfies B(c).

Existence Results ,

While the performance and stability sets B,(w) and B,(w) are more conveniently defined
in the N-plane, equivalent C-plane sets are needed for later use in the proof of existence
theorems. In Fig. 3 below, we show the shape of the high frequency C-plane performance and
stability constraints, denoted Gy(°) and C(eo) respectively. Note that Cy(s0)C,(c).

Given the above results it is possible to prove the following theorem on the existence of
contiruous time LGPS solutions. A formal proof is given in (Bailey Cockburn 1991).

Theorem 1: If the process model P(s;) satisfies Assumption 1C, the performance specifications
8T(w) saisfy Assumption 2C, and the stability specifications S, satisfy Assumption 3C with
®,’'<180°, then one can always find a realizable, rational loop-gain function L (s) such that
L,(jw) meets these closed loop specifications.

* Prof Sketch: By choosing L(jw) to have large gain and bandwidth, it can avoid the
performance and stability constraints, Cy(®) and C,(w). At some large frequency w,>w,, C,(®)
and C,(w) will closely approximate Cy(e0) and C,(e0) and C(w)cC(w). Since P, <180°, there
is a negative "gap” angle I" <0 between C(ec) and the positive real axis (see Fig. 3). For o>,
L,(jw) is chosen to fit through this gap area

until it is inside the stability constraint C,(e). At this point, L (jw)—0 as required by its pole
excess. O

In summary, the above theorem shows that in the minimum-phase case, the continuous
time LGPS robust control problem described above is underspecified. Thus, before beginning
an iterative search technique to find an LGPS solution, one knows that a solution exists. In
addition, since the problem is underspecified, additional design criteria such as bandwidth
minimization can be considered.




Gee)

Fig. 3. Fitting L (jo) to the Constraints C(c0) and C,(ce).

3. BACKGROUND ON A-TRANSFORMS

In the past, control system designers have used several different transform techniques in
the design process (e.g., the Laplace-transform, Z-transform, and W-transform). In recent work,
Middleton and Goodwin have proposed an alternative transform, the A-transform, that unifies
the treatment of continuous and discrete time systems. The A-transform has several advantages
including the facts that (1) it provides a single unified framework for describing all known
control system design techniques (2) it has better numerical properties than the Z-transform and
(3) it converges to the Laplace transform as the sampling period goes to zero. As will be shown,
the A-transform is a "corrected” Laplace transform, with the corrections on the order of the
sampling period (A). Moreover, in the case when fast sampling is employed, these corrections
become "insignificant” (Middleton and Goodwin 1990).

3.1 Discrete Time Models

Although we ussume the reader is familiar with the linear difference equations and Z-
rransforms, in this section we present a brief review of these topics in order to facilitate a clearer
presentation of the discrete time 8-model and the A-transform.
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Shift Operators and Z-Transforms

The standard description of discrete models uses the forward shift operator q defined by
the relation

qx, := X,

These models are useful because they exactly describe a linear difference equation and are easily
implemented in digital control or signal processing algorithms.

The Z-transform is the traditional transform technique used to analyze a time series (x,}
which is described by a shift-operator model. Given a time series {x,}, the one-sided Z-
transform of (x,} is given by

Zix,} = X(@2) := ix‘z *
k=0

where Z denotes the Z-transform operator. In elementary texts (Franklin and Powell 1980), it
is shown that if there exist constants M,6 € R such that lx(k)l < Me™ for all k, then the one-
sided Z-transform exists for all lz| > e°.

Delta Operators and A-Transforms

The discrete time delta operator 8 performs a forward difference operation and is defined
by

where A is the sampling period. It is directly related to the forward shift-operator q by the
relation

As the complex variable z is a frequency domain representation of the shift operator g,
the transform variable associated with 8-operators is the complex variable y. Given a time series
{x,}, the A-ransform of {x,} is obtained as

Tix) = X, =AY x, (1 +Ap*
k=0

where T denotes the A-transform operation.
From this definition it is clear that y=(z-1)/A. Thus, one can obtain a table of
A-transforms from a table of Z-transforms by noting that
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Xm-=A X(Z)L.A,.:
1
X(z) = -K A(Y)l,._'il

Finally, it can be shown that as A—0, T{x(s)} converges to the Laplace transform (herein
denoted by ). For a complete discussion of Unified Transform Theory, which includes delta
transforms, see (Middleton and Goodwin 1990).

Discrete Time & Models

In view of the relation between the shift operator q and the delta operator §, one can
directly compute a 8-model from a shift operator model, Z-transfer function, or difference
equation. However, if this discrete time model was obtained from an underlying continuous time
process, there are significant numcrical advantages in determining the 3-model directly from the
continuous time state equations (Middleton and Goodwin 1990).

To derive a discrete time step-invariant equivalent model, we assume a zero-order hold
at the input of the continuous time process and an ideal sampler at the output. Then, if the
continuous time model is '

. %X = Ax +Bu
P: y = Cx
the corresponding step-invariant discrete time 8 operator model is given by

) ox, = Fx, + Gu,

P.:
&y, =Cx,
where,
F (I-AI.AdA CAA—I
= (— | eMd1A =
A4 ) A
lA
G=(— |[e*dnB.
(Aof )

The corresponding A-transform of this step-invariant discrete time model is

Py = —1_ T {L'[P(sys]) = C(Hl - F)'G .
1+Ay ‘ _
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Stability Analysis and Frequency Response Using A-Transforms

In the complex y-plane, sinusoids of frequency ® correspond to points y=(¢***-1)/A. For
we[-n/A,r/A], these points describe a circle with its center at -1/A and radius 1/A as shown in
Fig. 4. This circle (herein called the B-circle) represents the stability boundary in the y-plane and
stable poles of P,(y) will lie inside this circle with |1+Ay| < 1. For convenience we define
B:=(¢**-1)/A as the complex parameter along the stability boundary, which is analogous to the

continuous time complex variable jw. Thus, one can express the frequency response of P,(Y) by

P,(B), where B=(¢**-1)/A. An important point on the B-circle is the fold-over frequency B,
where B=-2/A corresponding to w=w=mn/A.

im@y)

Fig. 4. Stability region for the y-plane.

3.2 Results From A-Transform Theory

Given a discrete time signal {x,} which is a sampled version of a continuous time signal
x(t), one can obtain the Laplace transform of the underlying continuous time signal x(t) by taking
the limit A—0 of the A-transform of {x,}. The following lemma shows that this property of A-
transforms hold for all signals x(t) that have a Laplace transform.

Lemma 1: (Middleton and Goodwin 1990)

Suppose x(+) (R—R) satisfies
(i) There exist M, A € R such that (1) | < Me for all t; and
(ii) For any Re{y} > A, x(t)e™ is Riemarn integrable.

If X,() is the A-transform of {x(kA)}, then for any Re{y} > A,

lim X, = f x(e T'dt = X(s),.,

0

where the above integral is a Riemann integral.




Another important feature of the A-transform is its ability to reveal connections between
continuous and discrete time equivalent process models as the sampling period is varied. The
following lemma illustrates this property. '

Lemma 2: If P(s):=C(sI-A)'B is a linear, time-invariant, continuous time process, the step-
invariant equivalent discrete time model P,(Y)=C(yI-F)'G satisfies

lim P(Y) = P(s)|,,
A0

* Proof: If F and G are given as above, it is easy to show that
lim P,(y) = C(yi-A)"'B .
A0

Note that Lemma 2 has the following obvious Corollary.

Corollary 1: If P,(Y) is the step-invariant equivalent, discrete time model of P(s), then
lim P,(B) = P(jw) .
A-0

where B=(e"-1)/A and we [0,7/A).

In addition to the above results, there are other advantages in the use of A-transforms in
the study of discrete time control systems. Some of these are:

(1) For fast sampling, the poles and zeros of the 8-model are approximately invariant
with respect to the sampling period. However, the extra zeros arising from sampling
(Astrom, Hagander, Sternby 1984) vary with A and converge to -oo as A—0. This means
that for fast sampling the system dynamics stay approximately constant, while the
sampling zeros move towards -ce,

(2) The delta operator has superior numerical properties compared to the equivalent shift
form. The main reason for this is that the delta operator moves the z-plane point (1+j0)
to the origin in the y-plane and thus eliminates the offset associated with the shift operator
pole-zero locations.

For those interested in using the A-transform for system design or analysis, there is a set of
numerical tools in MATLAB called the Delta Toolbox (Middleton Goodwin 1990).

4. THE DISCRETE TIME ROBUST CONTROL PROBLEM

In this section, we describe a discrete time robust control problem that arises in the design
of a robust digital controller to satisfy the continuous time LGPS problem outlined in Section 2.
We then prove the existence of a discrete time TDF controller which meets the related Y-plane
frequency response specifications and the corresponding continuous time specifications.
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4.1 Problem Description

As in the continuous time case, the discrete time LGPS approach assumes the TDF
structure, shown in Fig. 5. The problem we address is the LGPS design of a robust digital
controller for the uncertain discrete time process P,(y,a) described below.

Process Model .
The first step in the discrete time LGPS solution is to identify the equivalent discrete time
process model and the discrete time closed loop performance and stability specifications.

d

(k) 1+ u(k) g y(k)
- F0) G) RO) | —

F,(y) = Digital Pre-compensator

G,(y) = Digital Controller

P,(y) = Step-Invariant Discrete Time Process Model
LA(Y) = P,(1)G,(y) = Loop Gain

Ta(¥) = Fa(WL,(W/[1+L4()]

Fig. § An SISO Discrete Time System with TDF Structure.

Assumption I1D: The discrete time process P,(y,&0):=y/(1+AY)T{< '[P(s;a0)/s] } is the step-invariant
discrete time equivalent of a continuous time process P(s;a) that satisfies Assumption 1C. (Note:
T in this definition is the delta transform operator defined in Section 3.) We also assume a
sampling period A such that ail poles of P(s;a) are inside the primary stri) [-@,@®], where
W=T/A, alll the sampling zeros of P,(Y;at) are real, and all other non-sampling zeros of P,(v,a)
are stable’.

Performance Specifications

We assume that the discrete time closed loop performance specifications are given in
terms of bounds on the allowable variation of the closed loop transfer function, T,(B) (see Fig.
5). These performance specifications are given in the form 0 < a(B)c(B) < IT,(B) | € b(B)c(B) <o
for B<PB,. Thus for each P<P,, we define the allowable logarithmic gain variation as

! Further research into the behavior of non-sampling zcros is nceded. However, for fast sampling, we know that the
non-sampling zeros of P,(v,a) will approach the zcros of P(s;0).




ST,(B):=In[b(BYa(P)).

In addition, we assume that these discrete time performance specifications 8T,(B)
converge to the continuous time specifications 8T(w) as A—0. Moreover, we require the that
discrete time performance specifications relax completely as B—f,. These assumptions are given
below'.

Assumption 2D: We assume that 3T,(B)—8T(w) as A—0 and that 8T,(B)— as f—p,.

This assumption merely states that the performance specifications are reasonable: one should not
expect to achieve performance near or at the foldover frequency.

Stability Specifications

As in the continuous time case, the stability and/or relative stability speciﬁcations are
given in terms of a rectangular N-plane gain-phase ma.rgm region: S, := (G,".G, P, P, ). This
region was shown previously in Fig. 2.

Assumption 3D: We assume that the stability specifications S, satisfy the restriction that G, and
G,’ are bounded, while ®,'c{0°,180°} and ®_'c[-180°,0°].

4.2 The Discrete Time LGPS Solution

As will be shown, the basic elements of discrete time loop gain-phase shaping are very
similar to the continuous time case and the procedure for demonstrating the existence of LGPS
solutions in the discrete time case is similar to the one described in Section 2.

4.2.1 Discrete Time LGPS Definitions

Discrete Time Uncertainty Templates
Let P,(y,a0) be a step-invariant, discrete time plant model that satisfies Assumption 1D.
For each 0<B<B,, we define the discrete time gain-phase uncertainty template Q,(B) as

Qu(B):={(9.8)e N: ¢=arg|PA(B:c)/Po(B:cx,)], g=In [Po(Bic)/Py(Bixr,) | for all ae A,).

As before, these are normalized templates and thus will have their nominal points at (0°, 0 dB).
Given the above definition of Q,(B), we can prove the following properties of the uncerainty
templates.

Property 1: If P,(v.a) satisties Assumption 1D, then for each Pe [0,B,) the uncertainty templates
Q.(B) are gain bounded above ard below in the N-plane.

* Proof: Let P(s;a)=C(at)[sI-A(c)] 'B{a) for some state variable representation of P(s;a). Then,
Assumption 1D implies that the matrices A(a), B(a), and C(a) have elements that are bounded,

"If the performance specifications arc given in terms of a continuous function 8T(w), the use of the Bilincar
Transformation to map §T(w) into discrete time specifications 8T,(B) will satisfy Assumption 2D.
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continuous functions of ae Apcll’. Thus, the matrix

A
- l At
Q= J‘ eAtdt
also has elements that are bounded, continuous functions of ae A, This implies that the
coefficients of the transfer function P,(Y,0)=C(a){yI-F(®t)]'G(ax), where F=QA and G=0B, are
bounderd, continuous functions of ae A, From Assumption 1D, P,(y:a) can have no uncertain
poles or zeros on the y-plane stability boundary for all o€ A, and the sampling zeros are on the
reul axis. Thus P,(Y,a) is a continous funciion of & and maps the compact set A, into a compact
set in C which does not contain the origin. Thus, 0< [P,(B;x) l<eo for all ae A,, where Be [0,B,).

Property 2: Let Q{c) be the continuous time uncertainty template t"or P(s;x). Then, the discrete
time template Q,(B)=Q,((¢™-1)/A) will converge to the continuous time template Q(w) as A—0,
for we [G,n/A).

* Proof: This result follows from Corollary 1.

In the continuous time case, the high-frequency uncertainty template Q(eo) plays a
fundamental role in the proof of the existence of LGPS solutions. In the discrete time case, there
is a similar high-frequency template Q,(B,), where P is the discrete time fold-over frequency
defined in Section 3.1.

Property 3: At the frequency B=,, the uncertainty temp'ate Q,(B,) is a vertical line in the N-
plane located at (0°,0 dB).

* Proof: Since BeR, it follows that P,(B;x)e R.

Property 4: Q,(B)—Q(e) as A-0.
* Proof: This also follows from Corollary 1.

Performance Sets and Boundaries _

Given an template Q,(B) and performance specifications 8T,(B), the performance set
B,,(B) describes an N-plane region that any acceptable L,,(B)=G,(B)P,(B;a,) must avoid in order
to satisfy the performance specifications. Since the gairn-phase uncertainty of L,(B) is the same
as the gain-phase uncertainty of P,(;a), a performance set is obtained by shifting the uncertainty
template over the M-contours' in the N-plane simulating alternative choices of IG,(®) | and
arg{G,(B)}.

Given a template Q,(P) with its nominal point shifted to the location q,.€ N, there is an
associated total closed loop gair variation over the entire template denoted SM(B;q,.) given by

"M contours are C plane loci of consiant M= k/(142)|. See [do89] for details.
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SM@B:;q. ) := max M - minM
B b LX) LX)

By Pr.¢ 1ty 1, as the template nominal point g, is shifted toward larger gain (in the N-plane),
the vauc of 8M decreases to zero. And, as q,., is shifted toward the point (-180°, 0 dB) the
value of 8M increases toward . Thus, given a performance specification requirement 8T,(B),
it is possible to find a set of nominal point locations q,.,€ N such that SM(B;q,)25T,(B). For
each B, we define the performance set B,,(P) as

Bou(B) = {Quon€ N: SM(B;q,n)28T,(B)).
The boundary of the performance set B,,(B) is denoted dB,,(B).

Property 5: As A0, the discrete time performance sets B_,(B) converge to the continuous time
performance sets B (w), where B=(e**-1)/A.
* Proof: This follows from Assumption 2D and Property 2.

Property 6: The discrete time performance sets B,A(B) will converge to the continuous time high
frequency performance set B (<), as f—p, and A—0. :
* Proof: Follows from Assumption 2D and Property 4.

Stability Sets and Boundaries '

Given specifications on relative stability, S, := (G,*,G,",®.",®.), the stability set B_,(B)
describes for each B, a gain-phase (N-plane) region that all nominal loop functions
L.(B)=G,(B)P,(B) must avoid in order to satisfy the stability specifications. We define the
stability set B,,(B) as the set of all template nominal point locations g, N such that the gain-
phase template intersects the stability specification region. That is,

Biu(B) = (& N: S, 1 Qu(B) # 0.
The boundary of this set is denoted 9B, ,(B).

Property 7: As A—0, the discrete time stability sets B,(B) will converge to the continuous time
performance sets B,(w), where B=(e’**-1)/A.

* Proof: Follows from Property 2 and Assumption 3D.

Property 8: The discrete time stability sets B,,(B) will converge to the continuous time high
frequency stability set B (), as 3—p, and A—0.

* Proof:  Follows from Property 4 and Assumption 3D.

Property 9:  The sets B, (B,) and B,,(B,) have the property that B, (Boc<B,(B).

* Proof: This follows from the fact that B,A(B))={(¢.g)e N: Q,(B)(-180°,0 dB)=0)}. Since the
point (-180°.0 dB) is contained in S,, we see that B,,(3)<B,,(B).
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Property 9 indicates. that the discrete time stability sets will enclose the performance sets,
as Bof,. This is a crucial argument in the continuous time LGPS existence theorem given in
[bc91] and we see that it is also valid for the discrete-time case. This result simplifies the loop
fitting procedure because it shows that for B sufficientdy large one needs only satisfy the
high-frequency stability set.

As in the continuous time case, a complex plane description of the aiscrete time loop gain
constraint sets B,,(B) and B,,(B) facilitates the proof of the LGPS existence theorem. The
equivalent C-plane discrete time performance sets and stability sets are denoted by C,,() and
C.a(B), respectively. These discrete time C-plane constraints have the same convergence
properties as the N-plane constraints, i.e., C,(B)—=C, (B, and CM(B,)CC,A(B,), etc.

4.2.2 An LGPS Existence Theorem for Discrete Time Systems

From Section 2, we know that if the continuous time process is minimum-phase and has
only parametric uncertainty, the LGPS problem normally has a solution. As long as &,*<180°,
there exists an L (s) that meets arbitrary performance and stability specifications . Theoretically,
there is no limit on the "bandwidth” of the solution in this case and the use of large gain and
bandwidth allows us to meet arbitrary specifications for processes with parametric uncertainty.
However, when the process is non-minimum phase, the existence of a feasible LGPS solution is
problematical. In this case, the non-minimum phase zeros place an upper limit on the allowable
bandwidth of the solution (Freudenberg and Looze 1988). Thus, in some cases it is impossible
to find a real, rational loop function that wil! meet the given specifications.

In the discrete time robust control problem, the step invariant discrete time process model
typically has non-minimum phase zeros. Thus, in general the existence question of discrete time
LGPS solutions also appears problematical.

However, for the discrete process P,(y), we also know that as A—-)O the zeros due to
sampling will separate from the "non-sampling" zeros (Middelton and Goodwin 1990).
Moreover, the A-transform description of the sampled process reveals the fact that the sampling
zeros move towards -ee, as A—0. Thus, for arbitrarily fast sampling, we can move the
"bandwidth limi.ations” due to the non-minimum phase zeros to arbitrarily high frequencies. This
suggests that as A—(), there exists a real, rational discrete time nominal loop function L, (y) such
that the closed loop system satisfies arbitrary performance and stability specifications. This
reasoning is justified in Theorem 2 below.

Theorem 2: Let P,(y) be a discrete time process model that satisfies Assumption 1D. Then, if
the performance specifications 8T,(B) satisfy Assumption 2D and the stability specifications S,
satisfy Assumption 3D with ®_*<180°, there exists a sampling period A>0 and a realizable,
rational nominal loop function L,.(y) such that L,(B) that will satisfy these specifications.

* Proof: Let L, ()=y/(1+AY)T(Z'(L(s)/s)}, where L (s) is a solution to the continuous time
LGPS robust control problem. From Section 4.2.1, we know that C,(B)—C/(w) and
C,a(B)—C,(w) as A—0. We also know that the high frequency constraint sets C,(By) and C,.(B)
converge 10 C(e=) and C, (=), respectively, as A—0. Since @, <180°, there exists a negative
“gap" angle I"<0 between C,(e) and the real axis such that L (jw) can fit through the gap and
roll-off as necessary. Now, if L, (P) is the frequency response of L, (), Corollary 1 says that




the function L, (B) aiso satisfies these constraints as A—=0. O

Theorem 2 tells us that by choosing A arbitrarily small, we can approximate the
gain-phase constraints of the continuous time LGPS problem, C,(w) and C(w), arbitrarily close
with eauivalent discrete time gain-phase constraints, C,(B) and C,,(B). Moreover, we can
approximate L (jw) with a discrete time L, (B) as close as necessary. Thus, we can always find
a solution to the discrete time LGPS robust control problem described above.

5. ESTIMATING THE MAXIMUM FEASIBLE SAMPLING PERIOD

The above .esults show that given reasonable specificatic.is there exists a sampling period
A for which one can solve the discrete time robust control problem using LGPS. While these
results represent a contribution to the theory of QFT they are not very satisfying as they give no
hint to the range of acceptable A. A control systems designer would like to know that the
specifications can be met for all A less than some maximum value A,,.  Unfortunately, this
problem and others related to existence of LGPS solution of non-minimum phase processes is
quite difficult. In this section we outline this problem and offer a technique which is useful in
estimating A,,.

To begin, we note that the estimation of A, involves all of the elements of the LGPS
design problem. That is, the feasibility of the LGPS fitting problem for non-minimum phase
processes depends on the specifications, the process uncertainty, and details of the minimum
phase behavior of the process. To date only rough rules-of-thumb exist in the problem of
estimating feasibility in these cases. However, in the discrete time case, we have two advantages:
1) the non-minimum phase nature of the problem is somewhat limited by the structure of the
discrete time process model and 2) we can influence the "non-minimum phase effects” by the
choice of A.

5.1 Fast Sampling

In most digital control problems, the step-invariant discrete time process model P,(y) has
added zeros. That is, if P(s) has n poles and m zeros then P (Y)=[V/(1+ADIT{<L 'P(s)/s} typicaily
has n poles and n-1 zeros. The additional n,=n-m-1 zeros of P,(Y) are commonly termed
sampling zeros (Astrom, et. al. 1984). As A—0 in the y-plane, the poles and "non-sampling”
zeros of P,(y) cluster around the origin y=0, imitating the pattern of P(s), while the sampling
zeros of P,(y) are real (assuming no aliasing) and cluster around the point y=-2/A (Middletor and
Goodwin 1990).

In the case of parametric uncertainty where P(s)=P(s;ax) for ae A, the resuiting step
invariant equivalent P,(y,a) will have poles and zeros dependent on a. In addition, as A—0 the
poles and "non-sampling” zeros of P,(y,&) converge to the a-dependent poles and zeros of Pis;c).
However, as A—0 the sampling zeros of P,(y;a) converge to a-independent locations. Thus, we
will use the term fasr sampling to denote situations where P,(Y,&) can be approximated as

P,(» = B(ho)N,(¥)

where f’A(B;u)=P(im;a) and N,(y) contains all of the sampling zeros of P,(y) (See Fig. 6). Also
note that when wA is small, B=(e’"-1)/A=jw and thus there is a significant frequency range where
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P,(8)~P(jw).

In our estimation of Ay, we will assume that these fast sampling properties hold: 1) the
separation of the sampling zeros from the remaining pole-zero cluster, 2) the a-independence of
the sampling zero locations and 3) the assumption that P,(B)=P(jw) for a significant frequency
range.

5.2 Phase Deviation of L, (8)

The LGPS fitting procedure outlined in Section 4 assumed that the: . vas a phase margin
gap I' and that a minimum phase, rational L,(s) could be found such that L (jo) fit through this
gap. The difficulty of the discrete time LGPS fitting problem is the fact that the sampling zeros
contribute additional phase shift to P,(8) and thus to L,,(B). For any fixed A, this additional
phase shift may prevent L, (B) from conforming to the I gap and the high frequency stability
constraints. In this section we estimate the additional phase angle ¢,(B) contributed by the
samplirg zeros. We assume that this phase shift ¢,(8) will represent the deviation in L,,(B) from
L.(jo) for B=(¢"*-1)/A.

Im@)

Re(y)

Fig. 6. Fast Sampling Conditions in the y-plane.

As shown in Fig. 6, when the B-circle is close to the imaginary axis, the additional phase
contribution of n, sampling zeros at frequency B=jw can be estimated as

6.(B) = tan"'(wAn /2)

Note that we have assumed that the sampling zeros are all located at the point y=-2/A. They are
in fact distributed on both sides of this point.

5.3 The Allowable Phase Deviation in L, (8)

By choosing A small, the above relation shows that we can make ¢,(8) small and thus
make L,,(B) close to L (jw). The next question is the allowable range of ¢,(8) when solving the
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LGPS fitting problem.

As implied in Sections 2 and 5.2, there are two critical elements in the LGPS fitting
problem: one is the existence of a negative gap angle I" and the other is the existence of a @,
such that C(@)cC () for all w>w,. Since some of this gap is used by the phase angle of L (jw)
as it is rolled-off to enter the region where w>w,>w,, the designer must decide how much of the
gap is available for ¢,(B). We will denote this "available” gap ¢, and note that ¢,<I", as shown
in Fig. 7. Thus, we will require that

¢B) < ¢, <T" =180°-0,.

The above result indicates that part of the gap I will be used for the roll-off of L,(jo)
and the other part for the phase lag due to sampling zeros. This suggests a trade-off between the
bandwidth of L, (B) and A,;: the designer has a choice of using the available gap to provide
phase shift for rapid roll-off of L,(B) near B,, or sampling zero phase shift in ¢,.

5.4 Estimation of the Frequency o,

To minimize loop gain-bandwidth, the loop gain function L, ,(B) must fit through the I”
gap at frequencies P near 8=, Implementation of the A, estimate implied in Section 5.3
requires an estimate of the frequency B8,=w,. This is complicated by the fact that , depends on
the details of both the specifications 8T(w) and the size of the template Q(w).

ae) L

0dB

Fig. 7. N-Plane Depiction of the Allowable Phase Tolerance ¢, in L(jw).
One estimate of w, may be obtained by noting that B, (w)cB,(w) only when B () is

closed in the N-plane. Moreover, B,(w) is closed only at frequencies where (W) [<8T(w).
Since we require that 8T(w)-oo as w—eo, and we know that Q(w)—Q(ee) which is finite, we are
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assured that such frequencies always exists. Thus, we can estimate w, as the smallest frequency
@ such that IQ(w) k3T(w) for all w>@,.

8.5 Estimation of Ay,
Given the above development we now conclude that A, should be sufficiently small such
that the fast sampling conditions hold and

Ay £ 2/@,n,)tan(9)

where @ is an estimate for the frequency ,. This result is intuitively attractive because it
includes all of the features one w~uld expect in such an estimate: the template size, the
performance specifications, and the _.ability specifications. However, note that some amount of
continuous time LGPS design is needed to determine ¢ and to select ¢,.

6. AN EXAMPLE: A DC Motor with Uncertain Load

This example illustrates the utility of the above estimate for the maximum feasible
sampling period A, for a specific discrete time LGPS robust control system design problem.
In this example, we find a discrete time LGPS solution to the continuous time robust control
problem discussed in (Bailey and Hui 1991).

Process Model

A DC motor with an uncertain inertial load can be modeled by the following transfer
function

K
P(s;J) = n -
LU +J)s? + RU+1)s + K

where J €(7x10°,1.4x10?] and J_;=1.4x10°. The remaining constants (in SI units) have the
values

L=2210° K,=02
R=04 J, = 1.4x10?

Specifications

(i) The continuous time performance specifications for the closed loop system are given
as follows:
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 (rad/sec) frGw) | @B) 8Tw) (dB)

w<10 0 +0.05 0.1
we(10,100] 0+0.20 0.4
=300 201 2.00 4.0
©=3000 -40% 20.0 40.0

(i) The closed-loop stability specifications S, are giveh as the gain-phase region enclosed
by the 5 dB M-contour in the Nichols plane. This corresponds to a gain margin of about
4 dB and a phase margin of about 35°.

(iii) As additional specifications, L (s) is required to be Type 1 (i.e., one pole at s=0) and
the loop compensator must have a pole excess of one. :

Soluticn 1

The first step in the design of a digital controller is the selection of the sampling period
A. From the continuous time uncertainty templates in (Bailey and Hui 1991), we see that
Q@) =20 dB for all w=1000 (rad/sec). Given this information and the shape of the
spec:ﬁcanons 8T(w), one can estimate that IQ(w) 3T (w) for all ©>2000 (rad/sec) and thus the
estimate’ for w, is chosen to be m;-2000 (rad/sec). From the continuous time solution L (jw)
given in Fig. 9, notice that ¢,=10°. Thus, from Section 5 the estimate for the maximum feasible
sampling period is Ay=1. 76x10‘ (sec). Initially, we will use A=Ay=1.76x10" sec.

Given A, the next step is to develop discrete time process uncertainty templates
Qu(B)=Q,((¢"™-1)/4)), several of which are shown in Fig. 8. Note that these discrete time
templates are almost identical in size to the continuous time templates shown in (Bailey and Hui
1991). In fact for this choice of A, the discrete time templates were identical to the continous
time templates for frequencies up to the foldover frequency, w=1.785x10* (rad/sec).

Given the templates, the performance specifications, and stability specifications, the next
step is to find the discrete time performance and stability boundaries. Because A is small, the
discrete time performance specifcations 8T,(B) and the continuous time specifications 3T(w) are
nearly identical. Thus, we will use the continuous time specifications given above. For these
reasons the discrete time performance and stability constraints are also identical to the continuous
time constraints, i.¢., B,,(B)=B,(®) and B,,(B)=B,(w). Fig. 9 shows the performance boundaries
for =3, 10, 30, 100, 300, and 3000 (rad/sec) and the high frequency stability boundary B,(co).

Fig. 9 shows a typical minimum phase continuous time LGPS solution L (jw) and a
discrete time solution L, (y). Note that both loop furctions satisfv the performance and stability
constraints.

! For this particular example, it careful analysis shows that w,=2600 (rad/sec).
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MAGNITUDE (4dB)
3

-180 -!I60 -de0 -1‘20 -160 -8.0 -60 -40 -20 0
PHASE (degrees)

Fig. 8. Discrete Time Process Uncertainty Templates Q,((e"*-1)/A)) for =3,
10, 30, 100, 300, and 3000 (rad/s) with A=0.176 msec.

MAGNITUDE (d8)

PHASE (degrees)

Fig. 9. Continous Time and Discrete Time (A=0.176 msec) LGPS Solutions.
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Solution 2

In Fig. 10, another continuous time LGPS solution is shown with ¢,=25°. Thus, given
@,=2000 as found above, the estimate is A,=4.663x10* sec. However, for this example, if A=A,,,
no realizable, minimum phase, discrete time loop function L, (y) was found that fits the
constraints. Experimentation suggests that the absolute maximum sampling period for this
particular example is A=0.33 (msec). With A=0.32 (msec) one can satisfy the loop constraints
with the minimum phase loop function L, (y) shown in Fig. 10. The process uncertainty
templates for A=0.32 (msec) are identical to those shown in Fig. 8. Note that in this case, the
estimated Ay is high but reasonably close to what appears to be the truc A,

MAGNITUDE (dB)

-250 -2&) -I‘SO -100 -50 0
PHASE (degrees)

Fig. 10. Continuous Time and Discrete Time (A=0'.32 msec) LGPS Solutions.

7. CONCLUSIONS

In this paper we have developed the frequency domain properties of loop gain-phase
shaping for discrete time prccesses. With these properties, we have demonstrated the existence
of discrete time LGPS solutions to robust digital control of SISO, minimum-phase, continuous
time processes. The properties of discrete time LGPS were developed using the A-transform
discussed in (Middleton and Goodwin 1990). The A-transform allowed us to explicitly relate the
continuous time LGPS results given in (Bailey and Cockbum 1991) to the more difficult (and
usually non-minimum phase) discrete time LGPS robust control problem presented in this paper.
The results show that for reasonable specifications there always exists a sampling period A>0
such that the robust digital control problem has a solution.

In addition we presented an estimate for the maximum feasible sampling period for robust
digital control problems. It was shown that the question of maximum feasible sampling period
is related to the LGPS fitting problem for non-minimnum phase processes. For step-invariant
equivalents of minimum phase continuous time proce.ses, the non-minimum phase behavior
(caused by sampling zeros) is determined by the relative degree of the continuous time process
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P(s) and the sampling period A. By assuming fast sampling and by estimating the locations of
the sampling zeros, we estimate the additional phase lag introduced by the sampling zeros. We
then use this estimate of additional phase shift, along with partial information about the
continuous time LGPS solution, to estimate the maximum feasible sampling period A,,.

In general, the existence of discrete time LGPS solution for problems where the sampling
period is fixed a priori is prchlematical. Additional results in the area of LGPS feasibility for
non-minimum phase processes are needed in this area.
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APPENDIX

The folluwing is a glossary of the notation and definitions used above.

p

B

B,

B,(w), B,(B)
B,(w), B,(B)
B(e0), Ci(=)
B, (=), Cy(e<)
C(@), Cu(®
C(w), C,(B
r

A

dT(w), 8T,(B)
G,.G,’
L.(o), Lp(Y)
Q(w), QB
Q(e2), (B
S,

G, b,

a,

o,

Discrete time frequency response variable (analog of jo in continuous time)
Discrete time fold-over frequbncy

Discrete time frequency such that C,(B)cC,(B) for all BB,

Continuous and discrete time N-plane performance constraint sets
Continuous and discrete time N-plane relative stability constraint sets
Cortinuous time high-frequency stability sets (N-plane and C-plane)
Continuous time high-frequency performance sets (N-plane and C-plane)
Continuous and Jiscrete time C-plane performance constraint sets
Continuous and discrete time C-plane relative stability constraint sets
Negative gap angle between real axis and the edge of C,(e0)

Sampling period in seccends

Performance specifications of allowable variation in T(w)|or |TA(B) L
Lower and upper gain margins

Continuous and discrete time nominal loop gain functicn

Continuous time and discrete time process uncertainty templates
Continuous time and discrete time high-frequency uncertainty templates
Relativé stability specifications

Lower and upper phase margins

Continous time fold-over frequency (w=n/A)

Frequency such that C(w)cC,(w) for all w2w,
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Abstract

Recent developments in the use of computers for QFT design have concentrated
in automating the various aspects of the standard QFT design procedure. This
pape:r examines one aspezt of the standard design technique which cculd, and
perhaps should, be altered by the use of computing power. This is the use of
the UHB and the choice of nominal point. It is argued that more exact criteria
are now usable given the increase in computation power available, and that the
simplification of using the UHB is no longer necessary.

Additionally a view on the need for additional restraints within the QFT pro-
cedure is shown; namely some constraints on the loop gain to ensure that the
perceived good performance in theory is not the result of eliminating the “nasty”
dynamics by using a pre-filter.

1 Introduction

Since the introduction of the Nichols chart for the implementation of the graphical
approach to QFT little has changed in the b.sic approach to design of controllers
for single-input single-output (SISQ) linear time-invariant systems. This paper
looks at some of the assumptions and simplifications used and considers whether
they are still useful given the vas: increase in computing power now available.
The four main areas that are considered are the assumption that there are no
unmodelled high frequency dynamics, the purpose of the Universal High-frequency
Bound {UHB), the choice of the nominal point for the templates, and the require-
ment . r additional constraints on the loop transfer function, other than the re-

74




quirement that the variation of the closed locp transfer function is smaller than a
given bound.

This paper is designed to promote discussion of the fi:ndamental design process
of QFT, and to determine whether changes should be p.oposed in the techniques
used.

‘2 High frequency shape of templates

It is generally assumed within the standard QFT design theory (Horwitz and Sidi,
1972, Horowitz, 1982) that at high frequency as w — oo that the templates of
plant uncertainty tend to a vertical lines with length given by the magnitude of
the uncertainty in the gain of the system. This assumption leads to the statement
(Horwitz and Sidi, 1972) that the ideal loop transfer function should follow the
UHB exactly for all frequencies greater than w,, the frequency at which optimum
loop transfer function L(jw) first touches the UHB. This statement is based upon
the assumption that at high frequency there is only uncertainty in magninude,
and no uncertainty in phase. This is clearly not true for the case of unmodelled
high-frequency dynamics. This criticism was raised by Doyle (1986}, and a reply
was given by Yauiv and Horwitz (1987), however the fundamental problem of the
assumption that the templates tend to a vertical line as w — oo remains. This
causes problem because the current usage of teh UHB is based upon this principle.

Other problems with the current usage of the UHB are tackled in the next two
sections.

3 The purpose and accuracy of the UHB

There are a number of related interpretations of the purpose of the Universal High-
frequency Bound (UHB) but its main use is to ensure that at high frequencies the
controlled system cannot go unstable and has sufficient noise-rejection properties.
More specifically, it attempts to ensure that the system obeys the Nyquist stability
criterion, and that all of the templates remain outside a given M-circle; typically
the M = v/2 M-circle is chosen to ensure a minimum amount of damping.

In the standard QFT design technique the nominal point of the templates to
be manipulated on the Nicheis chart is a point with the highest phase and lowest
gain. It is then fairly simiple to determine the UHB by ensuring that, even at the
highest frequencies when the uncertainty, as mentioned above, is assum~d to be in
magnitude only, the template does not intersect with the required M-circle. Thus
the UHB of normal QFT design is typically a vertical line in the Nichols chart
extending from the M = /2 M-circle down a distance given by the uncertainty of
the magnitude at high frequency. The main historical reason for the development of
this UHB seems to be the saving in the time required to compute and manipulate a
iarge number of high-frequency templates on the Nichols chart, Given the increase
in computational power available it is now possible to calculate the templates at
many more frequencies than before and thereby eliminate the need for the UHB.

What is required is a condition at each frequency that ensures the template
does not intersect the specified M-circle. Example 1 takes a simple system and
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shows how, for a particular frequency, the UHB and the true bound on the nominal
loop transfer function L{jw) differ.

Example 1: Consider the plant

. K 0.5< K <4

P(s) = (1+ as) where 0.5<a<?
at a frequency of w = 1. Figure 1 shows the true template (solid line) with its
nominal, with A = 0.5, and a = 2 marked by. *. It also shows the M = /2
M-circle (dashed line) and the region into which the nominal must not pass at
this frequency to avoid the template intersecting the M = /2 M-circle (dotted
li;.e). The figure also shows the UHB for this plant marked by the dot-dashed

line, which has a vertical section of 30.1 dB (The magritude of the high-frequency
uncertainty ). '

20 -
0h- e
T400 350 300 250 200 150 -100 .50 [}

(Arg (deg)

Figure 1: The M = /2 M-circle, the corresponding UHB, the true boundary and the

uncertainty template.

It should be noted that not only does the bound on the template have a higher
gain for the nominal point, but it would, if continued, also extend considerably
further to the left, i.e., a greater phase lag, than does the standard UHB. This is

related to the choice of the nominal point of the templates, a point discussed in
the next section.

4 Choice of the nominal point

It is generally assumed that the choice of the nominal point is not fixed in the QF T
design technique. However because of the current usage of the UHB it is essential
that the nominal point of the templates is chosen for minimum gain, maximum
phase-lag, thus ensuring that all of the template, however large, is to the right of
the nominal in the Nichols chart, and hence all of the template avoids the specified
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M-circle. If this condition in not met then the UHB becomes useless, because the
template specified can intersect the M-circle while the nominal remains outside
the UHB.

This can be illustrated by using Example 1 again but chosing the nominal to
be the point where K = 0.5, and a = i.5. Figure 2 shows the template with
the nominal marked by *. It can clearly oe seen that while the nominal remains
outside the UHB, for some choices of parameters (e.g., K = 4, a = 0.5) the plant
is inside the M = /2 M-circle. This aspect of the choice is not clearly specified in
the standard QFT design procedure. Additionally this problem arises when other
template shapes are considered. This problem also appears in the work of East
(1981, 1982), where the use of circular templates is considered (Ballance, 1992).

g

Figure 2: The M = +/2 M-circle, the corresponding UHB, and a template with nominal
outside the UHB while intersecting the M = v/2 M-circle.

5 Specification of QFT problem

The final point to be raised in this paper is the specification of the QFT prob-
lem. The emphasis in the QFT design procedure is in meeting the tolerances of
the closed-loop specification. This is grnerally achieved by the use of the two-
degree-of freedom controller structure, ensuring that the loop controller reduces
the spread or variation of the closed loop transfer-function envelope, and using
by the pre-filter to ensure that the closed loop response falls within the specified
tolerances. Except for the simple use of the UHB, or more preferably ensuring that
the templates cannot intersect with the M = +/2 M-circle, there is generally little
specification or constraint on the form of the resultant loop transfer-function. Any
endesirable responses may be eliminated by the choice of the pre-filter to ensure the
tolerances are achieved. However, the result of this is that, while the tolerances on
the closed loop transfer function may be achieved, large gains may exist at sensitive




frequencies within the loop that are not considered in the input/output analysis,
because they are cancelled by the pre-filter. This can cause problems in systems
where measurement noise is a particular problem at a frequency close to that at
which it is desired to control the system. In order to achieve the required perfor-
mance of the system in terms of noise suppression and disturbance rejection, it is
normally necessary to undertake some post-design evaluation of the noise problem
and re-design if required. An alternative to this procedure is to directly include
requirements or specifications on the sensitivity function S(jw) = [1 + L(jw);" .
The treatment of such specifications can be incorporated in the standard QFT
design technique quite easily, however their use is not yet widespread.

6 Conclusions

This paper should serve as a basis for consideration of the fundamental principles
underlying the QFT design procedure. Its aim is to question whether the advances
in computational power available to the control system designer should alter the
assumptions and simplifications that are inherent in the QF'T design procedure. It
ha: outlined four areas in which consideration should perhaps be given to altering
the basis upon which QFT computer aided design packages are based. These are
tne effect of high frequency unmodelled dynamics on the template shape, the use
of the TTHB, the choice of the nominal point of thLe templates, and the need for
additional specifications on the sensitivity of the loop frequency response.
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Ir this paper, a rigorous formulation is presented for stability analysis of closed-loop
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1 Introduction

In this paper we develop a graphical stability criterion using a Nichols chart rather than the
standard complex plane. The motivation for this development is that use of Nichols charts
can often simplify control design. Chief among the techniques that employ Nichols charts is
the Quantitative Feedback Theozy (QFT) [1). Numerous examples demonstrated that the
design prc;cedure used in single-input/single-output QFT does indeed lead to a stable design
~ and even to robust stability in case of uncertain plants. | However, a rigorous proof for the
stability of this, and for that matter of any other Nichols chart based techniques, has never
been formulated. Indeed, in [2] it was remarked that in some cases it may be difficult to
define the closed-loop stability using Nichols plots. In this note we present a simple and

natural proof that is based on the celebrated Nyquist criterion.

2 Preliminaries

Before describing ourvmain results (Theorems 3,4), we need to take a closer iork at some of -
the technicalities invoived with the Nyquist criterion. |

The classical Nyquist stability criterion for rational functions ([3]) has be~n extended
to include certain classes of distributed parameter, nonlinear and time-varying systems. In
this paper we shall consider the class L of distributed parameter, linear time-invariant

plants whose impulse response p(t) has the form [4]

p(t) = pa(t) + pu(t) (1)
where p,(t) is the ipverse Laplace transform of a proper rational function P,(s) that

has no poles on'the extended jw -axis, and p,(t) is an absolutely integrable function on
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t € [0,00) (i.e., p, € L;[0,00) ). The Laplace transform of p(t) will be denoted by P(s).

Define the loop transmission as L(s) = P(s)G(s)H(s), where both the forward G(s)
and the feedback H(s) functions are rational and fixed. Assume that there are no unstable
cancellations between poles and zeros when forming L(s). Deﬁne the standard Nyquist
contour, I', asin Fig. 1, where jw -axis indentations are addedlas necessary to account for

imaginary poles of L(s). We assume that I' is chosen big enough to include all unstable

poles of L(s). Let n denote the total multiplicity of these poles. The Nyquist plot is the

image of L(s) under I'. The Nyquist stability criterion for the feedback system shown in
Fig. 2 with P € L is the following [4].

Theorem 1: The feedback system in Fig. 2 is stable if and only if the Nyquist
plot of L(s) does not intersect the point (—1,0), and encircles it n times in |

the counterclockwise direction.

Such encirclements are related to the net change of the argument of L(s) as s com-
pletes a full counterclockwise (or clockwise) revolution around TI'. Hence, Nyquist criterion
* is an immediate consequence of the argument principle of complex analysis [5}.

A recent article [6] presented the following simplification of the Nyquist criterion.
Let Ry betheray (—oo,—1). A crossingoccurs when the plot cf L(s) intersects Ry. The

crossing is said to be positive if the direction of the plot is upward, and neqative otherwise,

as shown in Fig. 3.

Theorem 2: The feedback system in Fig. 2 is stable if and only if the Nyquist plot
of L(s) does not intersect the point (—1,0), and the net sum of its crossings

ts equal to n.
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_ It is this simplification of the Nyquist stability criterion which we use in our Nichols

chart stability result.

Note in passing that in Theorem 2 the ray Ry may be replaced by any complex

ray emanating from the point (—1,0). More generally, it may be replaced by an arbitrary

* curve connecting this point and the point at infinity, under a suitable definition of crossing

.

orientation.

8 The Nichols Chart and Main Result

The Nichols chart NC represents complex numbers in terms of their magnitudes and phases.
Each complex number, s, has a cartesian representation (z,y) and a polar representa-
tion (r,¢). For historical reasons, we shall assume a non-principal choice for the phase:
—360 < ¢ < 0. The coordinates of the Nichols chart are (¢,logr), in this order. The hor-
izontal coordinate ¢ ranges between —360° and 0°, while the vertical coordinate logr
ranges theoretically from —oco to +4oo. In practice, the actual Nichols chart is naturally
limited to a finite range of log amplitudes. For simplicity, we use here logr instead of the

20logr used in control studies.

The map

T : (z,y) — (¢)logr) . )

transforms the Nyquist plot into the Nichols chart, and will be used to derive the Nichols
result. To have a better understanding of this map, we consider it as the composition of two

maps fog , where
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L. g : (z,y) — (logr, ¢)
2. f:(ré)—(é7)

The map g amounts to taking the logarithm of a complex number. It is a bijection

from the punctured complex plane €, onto the bi-infinite strip
S:={(r',4): —00<r <0, =-360°<¢<0)}.

(A bijection is a one-to-one and onto map). It is orientation preserving: a clockwise plot in
Cx (say, not crossing the positive real axis) is transformed by ¢ to a clockwise plot in S.
As defined, it is an analytic map at any point (z,y) not on the positive real axis. On this
ray, it is not even continuous.

The map f is evidently a continuous bijection from the bi-infinite strip S into the
Nichols chart. It is orientation reversing: a clockwise contour in S will be transformed into
a counterclockwise contour in NC . In particular, it ig not an analytic mapping (to see this
apply the Cauchy-Riemann conditions). |

The map T is thus seen to be an orientation reversing, one;to-one map from Cy
onto the Nich'ols chart NC, which is continuous except for a jump across the positive ray.

Mathematically speaking, the Nichols chart should have been drawn with the phase as
its vertical abscissa and the log magnitude as its Liorizontal abscissa. For unknown reasons,
Nichols [7] who introduced this 20 log r/phase chart, added the map f, and chose a non-
principal branch for the angle ¢ in NC; and this format has since been adoptcd as a
standard.

Let us now consider the action of T on a closed curve ¥ in Cx. Of course, the

cace we have in mind is when ¥ is the Nyquist plot of L(s).
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The image curve T(W) in the Nichols chart may fail to be closed, due to the
Jiscontinuity of f on the positive real axis. Each time ¥ hits the positive real axis,
T(¥) disappears at the right or left margin of the vertical strip NC and reappears on the
opposite margin. In particular, due to orientation reversal, cach clockwise winding of ¥
around the origin will result in T(¥) traversing NC from right to left, i.e. from ¢ =0°
to ¢ =-360°. " .

Each of the continuous pieces of T(¥) fo@d this way will be called a Nichols
branch. The single-sheeted Nichols plot is merely the union of these 'bra.nchm, drawn on a
single copy of the Nichols chart.

If one wishes to retain continuity of the Nichols plot, one has to extend S and NC
periodically in the angular coordinate. A Nyquist éurve winding k times around the origin
would be transformed this way into a continuous (but not closed!) curve drawn along a scroll
of at least k Nichols sheets. This curve will be called the multiple-sheeted Nichols plot.

Using the established properties of the map T, we can n.ow proceed to describe the
Nichols stability criterion. We emphasize that this criterion can be equally performed on
a single-sheet plot or a multiple-sheet plot. AThe decision to use the one or the other is a

matter of convenience only.
Theorem 3: The following are equivalent:

1. The feedback system in Fig. 2 is stable.

2. The one-sheeted Nichols plot of L(s) does not intersect the point q :=
(—180°,0dB), and the net sum of its crossings of the ray Ry := {(¢,r"): ¢ =

—180°, ' > 0dB} is equal to n.

8. Tke multiple-sheeicd Nichols plct of L(s) does not intersect aﬁy of the
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points (2k+1)q, k=0,%1,42,..., and the net sum of its crossings of

the reys Ry + 2kq s equal to n.

Proof. This is a straightforward adaptation of Theorem 2 to the Nichols chart. The
bijection T takes the ray Rf:=[-o0, —1) CCx ontn the ray Ry C NC, and the point
(-1,0) into the poiut q. Orientation reversal means that each counterclockwise crossing
of Ry is mapped into a a crossing from left to right of R,. We can now qoute Theorem 2.
QED

Some remarks on Theorem 3 are in order:

1. The choice of —180° in Theorem 3 ié canonical, and cannot be altered; on the
other hand, the ray Ry may be replaced by an arbitrary curve that connects the point
q with the upper boundary of the Nichols chart and maiatains positive distance from its
left and right margins. This follows from the remark following Theorem 2.

2. It has become customary in control design to use only half of the Nyquist plot (i.e.
the Bode plot). Because of conjugate symmetry, if there is a crossing at some so € I' then
there will be another crossing at 3, and of the same sign. That is, each crossing of the half

plot is tantamount to two crossings of the complete plot.

3.1 Examples

To illustrate the Nichols chart stability criterion, let us consider several examples that cover
various cases, stable and unstable, minimum phase and non minimum phase, and of varying
types. In all the examples below, for simplicity, the feedback system is the one shown in

Fig. 2 with unity feedback, H(s)=1. The Nyquist contour is the one shown in Fig. 1.
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Ezample 1. This example is stable and minimum phase

k
s+1

L(s) =

The full and half Nyquist plots on a NC are shown on Figs. 4-5 u.rith k = 2. Because there
are no crossings of the rays Ro + 2kq for any positive gain k and the open-loop system
is stable, the closed-loop system i.; stable. Note that the same conclusion can be arrived at
using either half or full plot.

Ezample 2. This example has the sa.rhe L{s) of Ex@ple 1, however, the range of
the gain is k¥ < 0. The sign of the feedback loop remains unchanged, negative, and we use
k = =2 for plotting. Let us first consider the full plot shown in Fig. 6. One can observe a
positive crossing (i.e., from left to right) of the ray Ry at w = 0. This crossing occurs below
or above 0 dB if £ > —1 or k < —1, respectively. If k = -1, the plot crosses _the point q
and hence we cannot deduce stability from the criterion. Therefore, the closed-loop system
is unstable for any k < —1. Similar conclusion can be arrived at using the half plot (Fig. 7).
Note that if the half plot touches but not actually crosses the ray Ry, the full plot will show
- a single crossing there. However, if the half plot is tangential to th&s ray, there is no crossing
there.

Ezample 3. This example has three stable poles and no zeros.

k
(s+1)(s +5)(s+10)

L(s) =

The gain used for plotting is k = 3000. When drawing the NC plot, one can use a single
chart or several as needed. As described earlier, any portion ¢f the NC plot can be shifted

left or right by ¥260°. Based on a shifted (i.e., using a singie NC sheet) full plot (Fig. 8),




two positive crossings are identified. Hence, the closed-loop system is stable if and only if
0 < k < 1000. The non-shifted full plot (Fig. 9) indicates the same conclusion. Based on
the half plot (Fig. 10), a single positive crossing is identified at w = 8.11 and |L(78.11)]| =3
(or 9.5 dB). This implies two positive crossings of the full plot.

E'zqmple 4. This example is taken from [6]. The system is open-loop stable

k(s + 50)2(s + 1000)

L(s) = (s +1)(s +2)(s + 5)(s + 200)(s + 500)°

The full and half NC plots are shown in Figs. 11-12. The gain used for plotting is k = 1.
In the half plot there are several crossings are at —18 dB (negative), —67 dB (positive) and
—98 dB (x‘lega.tive). Note, however, that these are not counted for stabiiity analysis since
|L(s)] < 0 dB. Because the system is open-loop stable, we have closed-loop stability if and ’ | ¢
only if the sum of all crossings is zero. Therefore, the closed-loop system is stable if and only

if 0 < k < 8 or 2240 < k < 80000. More specifically,
¢ if k < 8 there are no crossing above 0 dB; stable
e if 8 < k < 2240 there are 2 positive crossings; unstable
e if 2240 < k < 80000 there are 2 positive and 2 negative; stable

e if 80000 < k there are 4 positive and 2 negative crossings; unstable

Ezample 5. Consider a stable type 1 system

k . |

K6 = ey

The full and half NC plots are shown in Figs. 13-14 for k = 1. Based on the.full plot there

are two positive crossings at —40 dB. Therefore, closed-loop system is stable if and only if




0 < k < 100. The same conclusion can be reached using the half plot. Note, however, that if

' the system type is greater than zero, the half plot must.include the segment corresponding
to the indentation about the origin. In the complex plane, each integrator contributes to
the Nyquist plot a semi-circle of infinite radius. On a NC, each integrator contributes a
180° wide horizontal segment at magnitude of co dB. This segment will always end at the
start of the half plot, i.e. at the'point corresponding to w = e. Ciearly, in this example
the segment does not cross the ray Ro. Hence, we conclude that the half plot has a single
positive crossing at —40 dB. This implies two positive crossings of the full plot at —40 dB.
Ezample 6. Consider a type 1 unstable system

k
L(s) = ;(—3:—5.

The shifted full, non-shifted full, and half NC plots are shown in Figs. 15-17, respectively.
The gain used for plotting is k = 1. Based on either the shifted or non-shifted full plots there
is a single positive crossing of the ray R, at co dB due to the jw-indentation in I'. The plot
is not closed on the NC, but as mentioned earlier this does not influence the analysis. At any
rate, there is one open-loop unstable pole and together with the single positive croséing we
conclude that the closed-loop system will have two closed-loop unstable poles for any & > 0.
The half plot shows single positive crossing due to the integfa.tor. Such a crossing will not
be counted as any other crossing two in the full plot because it already reflects the map of
the complete jw-indentation by L(s).
Ezample 7. Consider a non minimum phase type 1 system

k(1 -3)
L(s) - ;m

Raq




The full aud half NC plots are shown in Figs. 18-19 for ¥ = 1. Based on the either plot one

concludes that there are two pegative crossings at 0 dB. Hence, the closed-loop system is
stableif 0 < k < 1.
the co dB segment. Again, the fact that the plot is not closed on the NC is not

important for stability analysis.

4 Robust Stability

Having derived the Nichols chart stability criterion for a fixed plant, let us turn our attention
to uncertain plants. In many physical situations, the actual plant response is not known
precisely. Rather, it is known to belong to a connected set P of plants. The idea of
. robust stability amounts to checking stability using one randomly chosen nominal loop L¢ =
G(s)H(s)P, , where Py € P is termed the nominal plant, and then demonstrating stability
of the whole set P by some argument involving the connected nature of P. This in
particular implies the stability of the actual plant P. Note that the attributes of the set P
are passed to'L(s) because both G(s) and H(s) are fixed.
In the Nyquist level, this is done as follows: at each frequency on the Nyquist contour,
T, the responses of the L(s) fill in a neighborhood of the nominal response Lo(s). This
neighborhood, which is typically an open connected region, is called the template at s.
As s travels along the Nyquist contour, the union of these templates becomes a connected
region, which we shall call the Nyquist envelope. The following robust stability result is a
minor modificat.on of a well known result [8] (Theorem 1), where we do not explicitly assume

conuectedness of P, but add a crucial assumption on the number of unstable poles:

Theorem 4: Let P be a set of admissible plants that share the same number of




unstable poles. Assume that each templaie is connected. Let Py(s) € P. Then

the feedback system in Fig. 2 is robustly steble iff the fized system corresponding

io Lo(s) is stable and the Nyquist envelope does not intersect the point (—1,0).

A similar picture is seen on the Nichols chart. Connectedness raises a small techni-
cality: if a connected Nyquist tex'x'xplate intersects the ray R, its singly-sheeted image in
the Nichols chart may fail to be connected. In this case, we shall find it necessary to assume
horizontal connectivity across the ﬁamins.

Simihtly, the singly-sheeted Nichols envelope is not necessarily connected even if the
Nyquist envelope is. However, one can reconstruct a connectled mxﬂtipleﬁheeted Nichols
envelope, with connected templatcs.

Under the map T, and taking connectedness into consideration, the following Nichols

stability criterion is obtained:

Theorem 5: Let P be a set of admissible plants that share the same number of
unstable poles. Assume that sach template in the mutliple sheeted Nichols chart
is connected. Namely, each template in the single sheeted chart is connected or

connected across the margins. Let Po(s) € P. Then the following are equivalent:

1. The feedback system in Fig. 2 is robustly stable.

2. The fized system corresponding to Lo(s) is stable and the single-sheeted
Nichols envelope does not intersect the point q.

3. The fized system corresponding to Lo(s) is stable and the multiple-sheeted
Nichols envelope does not intersect any of the points (2k + l)q, k =
0,+1,%£2,....
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The proof is again routine, using the map T and Theorem 4. The condition that the

plot does not intersect any of the points (2k+1)q is in fact the one used in the Quantitative
Feedback Theory.
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